論文の概要: Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation
- arxiv url: http://arxiv.org/abs/2404.00114v1
- Date: Fri, 29 Mar 2024 19:09:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 07:17:12.627413
- Title: Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation
- Title(参考訳): Deepfake Sentry: レジリエンス検出と一般化のためのハーネスングアンサンブルインテリジェンス
- Authors: Liviu-Daniel Ştefan, Dan-Cristian Stanciu, Mihai Dogariu, Mihai Gabriel Constantin, Andrei Cosmin Jitaru, Bogdan Ionescu,
- Abstract要約: 本稿では,持続的かつ積極的なディープフェイクトレーニング強化ソリューションを提案する。
我々は、ディープフェイクジェネレータモデルによって導入されたアーティファクトの効果を模倣するオートエンコーダのプールを採用する。
実験の結果,提案するアンサンブル・オートエンコーダに基づくデータ拡張学習手法が一般化の点で改善されていることがわかった。
- 参考スコア(独自算出の注目度): 0.8796261172196743
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in Generative Adversarial Networks (GANs) have enabled photorealistic image generation with high quality. However, the malicious use of such generated media has raised concerns regarding visual misinformation. Although deepfake detection research has demonstrated high accuracy, it is vulnerable to advances in generation techniques and adversarial iterations on detection countermeasures. To address this, we propose a proactive and sustainable deepfake training augmentation solution that introduces artificial fingerprints into models. We achieve this by employing an ensemble learning approach that incorporates a pool of autoencoders that mimic the effect of the artefacts introduced by the deepfake generator models. Experiments on three datasets reveal that our proposed ensemble autoencoder-based data augmentation learning approach offers improvements in terms of generalisation, resistance against basic data perturbations such as noise, blurring, sharpness enhancement, and affine transforms, resilience to commonly used lossy compression algorithms such as JPEG, and enhanced resistance against adversarial attacks.
- Abstract(参考訳): GAN(Generative Adversarial Networks)の最近の進歩により,高画質なフォトリアリスティック画像生成が可能になった。
しかし、このような生成メディアの悪意ある使用は、視覚的誤報に関する懸念を引き起こしている。
ディープフェイク検出研究は高い精度を示してきたが、検出対策における生成技術や敵の反復の進歩には弱い。
そこで本研究では,人工指紋をモデルに導入する,能動的かつ持続可能なディープフェイクトレーニング拡張ソリューションを提案する。
我々は,ディープフェイクジェネレータモデルによって導入された人工物の効果を模倣するオートエンコーダのプールを組み込んだアンサンブル学習手法を用いて,これを実現する。
提案したアンサンブル・オートエンコーダに基づくデータ強化学習手法は、一般化、ノイズ、ぼかし、シャープネスエンハンスメント、アフィン変換などの基本データ摂動に対する耐性、JPEGなどの一般的な損失圧縮アルゴリズムに対するレジリエンス、敵攻撃に対する耐性の向上などの点で改善されている。
関連論文リスト
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
論文 参考訳(メタデータ) (2024-11-12T01:17:27Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - Generalized Deepfakes Detection with Reconstructed-Blended Images and
Multi-scale Feature Reconstruction Network [14.749857283918157]
未確認データセットに対する堅牢な適用性を有するブレンドベース検出手法を提案する。
実験により、この手法により、未知のデータ上でのクロスマニピュレーション検出とクロスデータセット検出の両方のパフォーマンスが向上することが示された。
論文 参考訳(メタデータ) (2023-12-13T09:49:15Z) - Defense Against Adversarial Attacks using Convolutional Auto-Encoders [0.0]
敵攻撃は入力データを知覚不能な摂動で操作し、モデルがデータを誤分類したり、誤出力を発生させたりする。
この研究は、敵攻撃に対する標的モデルの堅牢性を高めることに基づいている。
論文 参考訳(メタデータ) (2023-12-06T14:29:16Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
本研究では,検出問題を(一級)アウト・オブ・ディストリビューション検出タスクとして形式化する,SeeABLEと呼ばれる新しいディープフェイク検出器を提案する。
SeeABLEは、新しい回帰ベースの有界コントラスト損失を使用して、乱れた顔を事前定義されたプロトタイプにプッシュする。
我々のモデルは競合する最先端の検出器よりも高い性能を示しながら、高度に一般化能力を示す。
論文 参考訳(メタデータ) (2022-11-21T09:38:30Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Self-supervised GAN Detector [10.963740942220168]
生成モデルは 不正や 破壊 偽ニュースなど 悪意のある目的で悪用される
トレーニング設定外の未確認画像を識別する新しいフレームワークを提案する。
提案手法は,GAN画像の高品質な人工指紋を再構成する人工指紋生成装置から構成する。
論文 参考訳(メタデータ) (2021-11-12T06:19:04Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
ディープフェイク(Deepfakes)として知られる非常に現実的なメディアは、現実の目から人間の目まで区別できない。
本研究では,テスト画像を再合成し,検出のための視覚的手がかりを抽出する,新しい偽検出手法を提案する。
種々の検出シナリオにおいて,提案手法の摂動に対する有効性の向上,GANの一般化,堅牢性を示す。
論文 参考訳(メタデータ) (2021-05-29T21:22:24Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。