Unconstrained Salient and Camouflaged Object Detection
- URL: http://arxiv.org/abs/2412.10943v1
- Date: Sat, 14 Dec 2024 19:37:17 GMT
- Title: Unconstrained Salient and Camouflaged Object Detection
- Authors: Zhangjun Zhou, Yiping Li, Chunlin Zhong, Jianuo Huang, Jialun Pei, He Tang,
- Abstract summary: We introduce a benchmark called Unconstrained Salient and Camouflaged Object Detection (USCOD)
USCOD supports the simultaneous detection of salient and camouflaged objects in unconstrained scenes, regardless of their presence.
To address this challenge, we propose USCNet, a baseline model for USCOD that decouples the learning of attribute distinction from mask reconstruction.
- Score: 4.698538612738126
- License:
- Abstract: Visual Salient Object Detection (SOD) and Camouflaged Object Detection (COD) are two interrelated yet distinct tasks. Both tasks model the human visual system's ability to perceive the presence of objects. The traditional SOD datasets and methods are designed for scenes where only salient objects are present, similarly, COD datasets and methods are designed for scenes where only camouflaged objects are present. However, scenes where both salient and camouflaged objects coexist, or where neither is present, are not considered. This simplifies the existing research on SOD and COD. In this paper, to explore a more generalized approach to SOD and COD, we introduce a benchmark called Unconstrained Salient and Camouflaged Object Detection (USCOD), which supports the simultaneous detection of salient and camouflaged objects in unconstrained scenes, regardless of their presence. Towards this, we construct a large-scale dataset, CS12K, that encompasses a variety of scenes, including four distinct types: only salient objects, only camouflaged objects, both, and neither. In our benchmark experiments, we identify a major challenge in USCOD: distinguishing between salient and camouflaged objects within the same scene. To address this challenge, we propose USCNet, a baseline model for USCOD that decouples the learning of attribute distinction from mask reconstruction. The model incorporates an APG module, which learns both sample-generic and sample-specific features to enhance the attribute differentiation between salient and camouflaged objects. Furthermore, to evaluate models' ability to distinguish between salient and camouflaged objects, we design a metric called Camouflage-Saliency Confusion Score (CSCS). The proposed method achieves state-of-the-art performance on the newly introduced USCOD task. The code and dataset will be publicly available.
Related papers
- Toward Realistic Camouflaged Object Detection: Benchmarks and Method [11.279532701331647]
Camouflaged object detection (COD) primarily relies on semantic or instance segmentation methods.
We propose a camouflage-aware feature refinement (CAFR) strategy to detect camouflaged objects.
CAFR fully utilizes a clear perception of the current object within the prior knowledge of large models to assist detectors in deeply understanding the distinctions between background and foreground.
arXiv Detail & Related papers (2025-01-13T13:04:00Z) - CGCOD: Class-Guided Camouflaged Object Detection [19.959268087062217]
We introduce class-guided camouflaged object detection (CGCOD), which extends traditional COD task by incorporating object-specific class knowledge.
We propose a multi-stage framework, CGNet, which incorporates a plug-and-play class prompt generator and a simple yet effective class-guided detector.
This establishes a new paradigm for COD, bridging the gap between contextual understanding and class-guided detection.
arXiv Detail & Related papers (2024-12-25T19:38:32Z) - Seamless Detection: Unifying Salient Object Detection and Camouflaged Object Detection [73.85890512959861]
We propose a task-agnostic framework to unify Salient Object Detection (SOD) and Camouflaged Object Detection (COD)
We design a simple yet effective contextual decoder involving the interval-layer and global context, which achieves an inference speed of 67 fps.
Experiments on public SOD and COD datasets demonstrate the superiority of our proposed framework in both supervised and unsupervised settings.
arXiv Detail & Related papers (2024-12-22T03:25:43Z) - Camouflaged Object Detection with Feature Grafting and Distractor Aware [9.791590363932519]
We propose a novel Feature Grafting and Distractor Aware network (FDNet) to handle the Camouflaged Object Detection task.
Specifically, we use CNN and Transformer to encode multi-scale images in parallel.
A Distractor Aware Module is designed to explicitly model the two possible distractors in the COD task to refine the coarse camouflage map.
arXiv Detail & Related papers (2023-07-08T09:37:08Z) - Referring Camouflaged Object Detection [97.90911862979355]
Ref-COD aims to segment specified camouflaged objects based on a small set of referring images with salient target objects.
We first assemble a large-scale dataset, called R2C7K, which consists of 7K images covering 64 object categories in real-world scenarios.
arXiv Detail & Related papers (2023-06-13T04:15:37Z) - The Art of Camouflage: Few-Shot Learning for Animal Detection and Segmentation [21.047026366450197]
We address the problem of few-shot learning for camouflaged object detection and segmentation.
We propose FS-CDIS, a framework to efficiently detect and segment camouflaged instances.
Our proposed method achieves state-of-the-art performance on the newly collected dataset.
arXiv Detail & Related papers (2023-04-15T01:33:14Z) - CamoFormer: Masked Separable Attention for Camouflaged Object Detection [94.2870722866853]
We present a simple masked separable attention (MSA) for camouflaged object detection.
We first separate the multi-head self-attention into three parts, which are responsible for distinguishing the camouflaged objects from the background using different mask strategies.
We propose to capture high-resolution semantic representations progressively based on a simple top-down decoder with the proposed MSA to attain precise segmentation results.
arXiv Detail & Related papers (2022-12-10T10:03:27Z) - Towards Deeper Understanding of Camouflaged Object Detection [64.81987999832032]
We argue that the binary segmentation setting fails to fully understand the concept of camouflage.
We present the first triple-task learning framework to simultaneously localize, segment and rank camouflaged objects.
arXiv Detail & Related papers (2022-05-23T14:26:18Z) - Simultaneously Localize, Segment and Rank the Camouflaged Objects [55.46101599577343]
Camouflaged object detection aims to segment camouflaged objects hiding in their surroundings.
We argue that explicitly modeling the conspicuousness of camouflaged objects against their particular backgrounds can lead to a better understanding about camouflage and evolution of animals.
We present the first ranking based COD network (Rank-Net) to simultaneously localize, segment and rank camouflaged objects.
arXiv Detail & Related papers (2021-03-06T02:53:36Z) - Concealed Object Detection [140.98738087261887]
We present the first systematic study on concealed object detection (COD)
COD aims to identify objects that are "perfectly" embedded in their background.
To better understand this task, we collect a large-scale dataset called COD10K.
arXiv Detail & Related papers (2021-02-20T06:49:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.