論文の概要: Multivariate regression modeling in integrative analysis via sparse
regularization
- arxiv url: http://arxiv.org/abs/2304.07451v1
- Date: Sat, 15 Apr 2023 02:27:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 19:02:10.538035
- Title: Multivariate regression modeling in integrative analysis via sparse
regularization
- Title(参考訳): スパース正規化による積分解析における多変量回帰モデル
- Authors: Shuichi Kawano, Toshikazu Fukushima, Junichi Nakagawa, Mamoru Oshiki
- Abstract要約: 統合分析は、複数の独立したデータセットから有用な情報をプールする効果的な方法である。
この積分は、変数とグループ選択を実行するスパース推定によって達成される。
提案手法の性能をモンテカルロシミュレーションおよび微生物測定による排水処理データの解析により実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The multivariate regression model basically offers the analysis of a single
dataset with multiple responses. However, such a single-dataset analysis often
leads to unsatisfactory results. Integrative analysis is an effective method to
pool useful information from multiple independent datasets and provides better
performance than single-dataset analysis. In this study, we propose a
multivariate regression modeling in integrative analysis. The integration is
achieved by sparse estimation that performs variable and group selection. Based
on the idea of alternating direction method of multipliers, we develop its
computational algorithm that enjoys the convergence property. The performance
of the proposed method is demonstrated through Monte Carlo simulation and
analyzing wastewater treatment data with microbe measurements.
- Abstract(参考訳): 多変量回帰モデルは基本的に、複数の応答を持つ単一のデータセットの分析を提供する。
しかし、このような単一データセット分析は、しばしば不十分な結果をもたらす。
統合分析は、複数の独立したデータセットから有用な情報をプールする効果的な方法であり、シングルデータセット分析よりも優れたパフォーマンスを提供する。
本研究では,積分解析における多変量回帰モデルを提案する。
この統合は、変数とグループ選択を実行するスパース推定によって達成される。
乗算器の交互方向法という考え方に基づき,収束特性を享受する計算アルゴリズムを開発した。
提案手法の性能をモンテカルロシミュレーションおよび微生物測定による排水処理データの解析により実証した。
関連論文リスト
- Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - An Efficient Data Analysis Method for Big Data using Multiple-Model
Linear Regression [4.085654010023149]
本稿では,Multiple Model linear regression (MMLR) と呼ばれる新たに定義された回帰モデルを用いて,ビッグデータの新しいデータ解析手法を提案する。
提案手法は,他の回帰法よりも効率的かつ柔軟であることが示されている。
論文 参考訳(メタデータ) (2023-08-24T10:20:15Z) - An Extended Multi-Model Regression Approach for Compressive Strength
Prediction and Optimization of a Concrete Mixture [0.0]
コンクリートの圧縮強度のモデルに基づく評価は, 強度予測と混合最適化の両方のために高い値である。
複数の回帰手法の重み付け組み合わせにより予測モデルの精度を向上させるためのさらなる一歩を踏み出す。
得られた多回帰モデルに基づいてGAに基づく混合最適化を提案する。
論文 参考訳(メタデータ) (2021-06-13T16:10:32Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays [62.997667081978825]
一般化線形潜在変数モデル(GLLVM)は、そのような因子モデルを非ガウス応答に一般化する。
GLLVMのモデルパラメータを推定する現在のアルゴリズムは、集約的な計算を必要とし、大規模なデータセットにスケールしない。
本稿では,GLLVMを高次元データセットに適用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-06T04:28:19Z) - Relationship-aware Multivariate Sampling Strategy for Scientific
Simulation Data [4.2855912967712815]
本研究では,元の変数関係を保存する多変量サンプリング戦略を提案する。
提案手法は主成分分析を用いて多変量データの分散を抽出し, 単一変数に対する既存の最先端サンプリングアルゴリズム上に構築することができる。
論文 参考訳(メタデータ) (2020-08-31T00:52:17Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
本研究では,本データセットの内在的多次元構造を保持するモデルを開発する。
モデルパラメータを推定するために、オルタネート・リースト・スクエアスアルゴリズムを開発した。
提案モデルは,予測文献に存在するベンチマークモデルより優れている。
論文 参考訳(メタデータ) (2020-02-11T11:57:07Z) - Analysis of Bayesian Inference Algorithms by the Dynamical Functional
Approach [2.8021833233819486]
学生自明なシナリオにおいて,大ガウス潜在変数モデルを用いて近似推論のアルゴリズムを解析する。
完全データモデルマッチングの場合、レプリカ法から派生した静的順序パラメータの知識により、効率的なアルゴリズム更新が得られる。
論文 参考訳(メタデータ) (2020-01-14T17:22:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。