論文の概要: Can ChatGPT Forecast Stock Price Movements? Return Predictability and
Large Language Models
- arxiv url: http://arxiv.org/abs/2304.07619v2
- Date: Sat, 22 Apr 2023 20:07:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 20:11:48.484844
- Title: Can ChatGPT Forecast Stock Price Movements? Return Predictability and
Large Language Models
- Title(参考訳): ChatGPTは株価変動を予測できるのか?
戻り予測可能性と大規模言語モデル
- Authors: Alejandro Lopez-Lira and Yuehua Tang
- Abstract要約: 当社はChatGPTを使って、企業の株価に対する見出しが良いのか悪いのか、それとも無関係なニュースなのかを示す。
次に、数値スコアを計算し、これらのChatGPTスコアとその後の日次株式市場のリターンとの間に正の相関関係を文書化する。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We examine the potential of ChatGPT, and other large language models, in
predicting stock market returns using sentiment analysis of news headlines. We
use ChatGPT to indicate whether a given headline is good, bad, or irrelevant
news for firms' stock prices. We then compute a numerical score and document a
positive correlation between these ChatGPT scores and subsequent daily stock
market returns. Further, ChatGPT outperforms traditional sentiment analysis
methods. We find that more basic models such as GPT-1, GPT-2, and BERT cannot
accurately forecast returns, indicating return predictability is an emerging
capacity of complex models. Our results suggest that incorporating advanced
language models into the investment decision-making process can yield more
accurate predictions and enhance the performance of quantitative trading
strategies.
- Abstract(参考訳): ニュース見出しの感情分析を用いて株式市場のリターンを予測するため,ChatGPTや他の大規模言語モデルの可能性を検討する。
chatgptを使って、ある見出しが企業の株価に良い、悪い、あるいは関係のないニュースかどうかを示す。
そして、数値スコアを計算し、これらのchatgptスコアとその後の毎日の株式市場リターンとの正の相関関係を文書化する。
さらに、ChatGPTは従来の感情分析方法よりも優れています。
GPT-1, GPT-2, BERTのようなより基本的なモデルではリターンを正確に予測できないことが分かり、リターン予測能力は複雑なモデルの出現能力を示す。
この結果から,先進言語モデルを投資決定プロセスに組み込むことで,より正確な予測が得られ,量的トレーディング戦略の性能が向上することが示唆された。
関連論文リスト
- Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
本稿では、命令ベースの新しい手法と量子化低ランク適応(QLoRA)圧縮を組み合わせることで、LLM(Large Language Models)命令を微調整することで、高度なアプローチを提案する。
近年の市場指標やアナリストの成績等「外部要因」を統合して、リッチで教師付きデータセットを作成する。
この研究は、最先端のAIを微調整された財務データに統合する能力を実証するだけでなく、AI駆動の財務分析ツールを強化するための将来の研究の道を開く。
論文 参考訳(メタデータ) (2024-08-13T04:53:31Z) - Monetizing Currency Pair Sentiments through LLM Explainability [2.572906392867547]
大規模言語モデル(LLM)は、今日の組織のほとんどすべての領域において重要な役割を担います。
我々は,感情分析の妥当性を説明するために,LLMをポストホックモデルに依存しないツールとして活用する新しい手法を提案する。
本手法を金融分野に適用し,公開ニュースフィードデータと市場価格を融合した通貨対対価の予測を行う。
論文 参考訳(メタデータ) (2024-07-29T11:58:54Z) - Financial Statement Analysis with Large Language Models [0.0]
我々は、標準化された匿名の財務諸表をGPT4に提供し、モデルを解析して将来の収益の方向性を決定するよう指示する。
LLMの予測精度は、狭義の最先端MLモデルの性能と同等であることがわかった。
GPTの予測に基づく貿易戦略は、他のモデルに基づく戦略よりもシャープ比とアルファ率が高い。
論文 参考訳(メタデータ) (2024-07-25T08:36:58Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - Ploutos: Towards interpretable stock movement prediction with financial
large language model [43.51934592920784]
PloutosはPloutosGenとPloutosGPTで構成される新しい金融フレームワークである。
PloutosGenには、テキストや数値など、さまざまなモーダルデータを分析し、異なる観点から定量的戦略を提供する、複数の主要な専門家が含まれている。
PloutosGPTのトレーニング戦略は、GPT-4を誘導して合理性を生成するリアビューミラープロンプト機構と、LLMを微調整するための動的トークン重み付け機構を活用する。
論文 参考訳(メタデータ) (2024-02-18T10:28:18Z) - Learning to Generate Explainable Stock Predictions using Self-Reflective
Large Language Models [54.21695754082441]
説明可能なストック予測を生成するために,LLM(Large Language Models)を教えるフレームワークを提案する。
反射剤は自己推論によって過去の株価の動きを説明する方法を学ぶ一方、PPOトレーナーは最も可能性の高い説明を生成するためにモデルを訓練する。
我々のフレームワークは従来のディープラーニング法とLLM法の両方を予測精度とマシューズ相関係数で上回ることができる。
論文 参考訳(メタデータ) (2024-02-06T03:18:58Z) - Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models [11.154814189699735]
大規模な言語モデル (LLM) は様々なNLPタスクにおいて優れた性能を示した。
本稿では,金融感情分析のためのLLMフレームワークを提案する。
提案手法の精度は15%から48%向上し,F1得点を得た。
論文 参考訳(メタデータ) (2023-10-06T05:40:23Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。