論文の概要: Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models
- arxiv url: http://arxiv.org/abs/2310.04027v2
- Date: Sat, 4 Nov 2023 13:44:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-07 20:23:17.579843
- Title: Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models
- Title(参考訳): 検索型大規模言語モデルによる財務感性分析の強化
- Authors: Boyu Zhang, Hongyang Yang, Tianyu Zhou, Ali Babar, Xiao-Yang Liu
- Abstract要約: 大規模な言語モデル (LLM) は様々なNLPタスクにおいて優れた性能を示した。
本稿では,金融感情分析のためのLLMフレームワークを提案する。
提案手法の精度は15%から48%向上し,F1得点を得た。
- 参考スコア(独自算出の注目度): 11.154814189699735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Financial sentiment analysis is critical for valuation and investment
decision-making. Traditional NLP models, however, are limited by their
parameter size and the scope of their training datasets, which hampers their
generalization capabilities and effectiveness in this field. Recently, Large
Language Models (LLMs) pre-trained on extensive corpora have demonstrated
superior performance across various NLP tasks due to their commendable
zero-shot abilities. Yet, directly applying LLMs to financial sentiment
analysis presents challenges: The discrepancy between the pre-training
objective of LLMs and predicting the sentiment label can compromise their
predictive performance. Furthermore, the succinct nature of financial news,
often devoid of sufficient context, can significantly diminish the reliability
of LLMs' sentiment analysis. To address these challenges, we introduce a
retrieval-augmented LLMs framework for financial sentiment analysis. This
framework includes an instruction-tuned LLMs module, which ensures LLMs behave
as predictors of sentiment labels, and a retrieval-augmentation module which
retrieves additional context from reliable external sources. Benchmarked
against traditional models and LLMs like ChatGPT and LLaMA, our approach
achieves 15\% to 48\% performance gain in accuracy and F1 score.
- Abstract(参考訳): 金融センチメント分析は、バリュエーションと投資決定に不可欠である。
しかし、従来のNLPモデルは、パラメータサイズとトレーニングデータセットの範囲によって制限されており、この分野での一般化能力と有効性を損なう。
近年,広範コーパスで事前学習したLarge Language Models (LLMs) は,圧縮可能なゼロショット能力のため,様々なNLPタスクにおいて優れた性能を示した。
LLMの事前学習目標と感情ラベルの予測との相違は、彼らの予測性能を損なう可能性がある。
さらに、十分な文脈を欠いた財務ニュースの簡潔な性質は、LLMの感情分析の信頼性を著しく低下させる可能性がある。
これらの課題に対処するため,金融感情分析のためのLLMフレームワークを提案する。
このフレームワークは、LLMが感情ラベルの予測子として振る舞うことを保証する命令調整LDMモジュールと、信頼できる外部ソースから追加コンテキストを取得する検索拡張モジュールを含む。
従来のモデルとChatGPTやLLaMAなどのLLMを比較し,精度とF1得点の15~48倍の性能向上を実現した。
関連論文リスト
- A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
大規模言語モデル(LLM)開発における最大の課題は、その面倒な事前トレーニングコストである。
本稿では,小言語モデル(SLM)を活用して,LLMの事前学習効率と品質を改善するための有望なパラダイムについて検討する。
論文 参考訳(メタデータ) (2024-10-24T14:31:52Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
論文 参考訳(メタデータ) (2024-10-03T17:53:30Z) - Financial Statement Analysis with Large Language Models [0.0]
我々はGPT4に標準化された匿名の財務文書を提供し、モデルを解析するように指示する。
このモデルでは、財務アナリストが収益の変化を予測できる能力を上回っている。
GPTの予測に基づく貿易戦略は、他のモデルに基づく戦略よりもシャープ比とアルファ率が高い。
論文 参考訳(メタデータ) (2024-07-25T08:36:58Z) - Large Language Model Adaptation for Financial Sentiment Analysis [2.0499240875882]
一般言語モデルは、金融に特化されたタスクでは不足する傾向にある。
1.5B未満のパラメータを持つ2つの基礎モデルは、幅広い戦略を用いて適応されている。
小型LLMは大規模モデルに匹敵する性能を有しつつ,パラメータやデータの観点からも効率がよいことを示す。
論文 参考訳(メタデータ) (2024-01-26T11:04:01Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
オープンソースのLarge Language Models(LLM)の普及は、包括的な評価方法の緊急の必要性を強調している。
我々は不確実性定量化を統合した LLM のための新しいベンチマーク手法を提案する。
以上の結果より, 精度の高いLSMでは, 精度が低下する可能性があり, II) より大規模なLSMでは, より小型のLSMに比べて不確実性が高いこと, III) 命令ファインタニングではLCMの不確実性が高くなる傾向が示唆された。
論文 参考訳(メタデータ) (2024-01-23T14:29:17Z) - A Comparative Analysis of Fine-Tuned LLMs and Few-Shot Learning of LLMs
for Financial Sentiment Analysis [0.0]
我々は、財務分野のデータセット上で、コンテキスト内学習と微調整LDMの2つのアプローチを採用する。
以上の結果から, 微調整された小型LCMは, 最先端の微調整LDMに匹敵する性能を達成できることが示唆された。
文脈内学習におけるショット数が増加すると、財務領域の感情分析のパフォーマンスが向上することはない。
論文 参考訳(メタデータ) (2023-12-14T08:13:28Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Large Language Models in Finance: A Survey [12.243277149505364]
大規模言語モデル(LLM)は、金融における人工知能応用の新しい可能性を開いた。
大規模言語モデル(LLM)の最近の進歩は、金融における人工知能応用の新しい可能性を開いた。
論文 参考訳(メタデータ) (2023-09-28T06:04:04Z) - Instruct-FinGPT: Financial Sentiment Analysis by Instruction Tuning of
General-Purpose Large Language Models [18.212210748797332]
本稿では,これらの問題に対処する簡易かつ効果的な命令チューニング手法を提案する。
実験では, 最先端の教師付き感情分析モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-22T03:56:38Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。