論文の概要: Can ChatGPT Forecast Stock Price Movements? Return Predictability and
Large Language Models
- arxiv url: http://arxiv.org/abs/2304.07619v3
- Date: Sun, 2 Jul 2023 15:41:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-04 13:53:13.331097
- Title: Can ChatGPT Forecast Stock Price Movements? Return Predictability and
Large Language Models
- Title(参考訳): ChatGPTは株価変動を予測できるのか?
戻り予測可能性と大規模言語モデル
- Authors: Alejandro Lopez-Lira and Yuehua Tang
- Abstract要約: 当社はChatGPTを使って、企業の株価に対する見出しが良いのか悪いのか、それとも無関係なニュースなのかを示す。
次に、数値スコアを計算し、これらのChatGPTスコアとその後の日次株式市場のリターンとの間に正の相関関係を文書化する。
GPT-1, GPT-2, BERTのようなより基本的なモデルでは、リターンを正確に予測することはできない。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We examine the potential of ChatGPT, and other large language models, in
predicting stock market returns using sentiment analysis of news headlines. We
use ChatGPT to indicate whether a given headline is good, bad, or irrelevant
news for firms' stock prices. We then compute a numerical score and document a
positive correlation between these ``ChatGPT scores'' and subsequent daily
stock market returns. Further, ChatGPT outperforms traditional sentiment
analysis methods. We find that more basic models such as GPT-1, GPT-2, and BERT
cannot accurately forecast returns, indicating return predictability is an
emerging capacity of complex models. ChatGPT-4's implied Sharpe ratios are
larger than ChatGPT-3's; however, the latter model has larger total returns.
Our results suggest that incorporating advanced language models into the
investment decision-making process can yield more accurate predictions and
enhance the performance of quantitative trading strategies. Predictability is
concentrated on smaller stocks and more prominent on firms with bad news,
consistent with limits-to-arbitrage arguments rather than market
inefficiencies.
- Abstract(参考訳): ニュース見出しの感情分析を用いて株式市場のリターンを予測するため,ChatGPTや他の大規模言語モデルの可能性を検討する。
chatgptを使って、ある見出しが企業の株価に良い、悪い、あるいは関係のないニュースかどうかを示す。
そして、数値スコアを計算し、これらの‘chatgptスコア’とその後の毎日の株式市場リターンとの正の相関関係を文書化する。
さらに、ChatGPTは従来の感情分析方法よりも優れています。
GPT-1, GPT-2, BERTのようなより基本的なモデルではリターンを正確に予測できないことが分かり、リターン予測能力は複雑なモデルの出現能力を示す。
ChatGPT-4のインプリッドシャープ比はChatGPT-3よりも大きいが、後者のモデルは総リターンが大きい。
この結果から,先進言語モデルを投資決定プロセスに組み込むことで,より正確な予測が得られ,量的トレーディング戦略の性能が向上することが示唆された。
予測可能性(predictability)は小さな株に集中し、悪いニュースの会社に注目する。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
本稿では、命令ベースの新しい手法と量子化低ランク適応(QLoRA)圧縮を組み合わせることで、LLM(Large Language Models)命令を微調整することで、高度なアプローチを提案する。
近年の市場指標やアナリストの成績等「外部要因」を統合して、リッチで教師付きデータセットを作成する。
この研究は、最先端のAIを微調整された財務データに統合する能力を実証するだけでなく、AI駆動の財務分析ツールを強化するための将来の研究の道を開く。
論文 参考訳(メタデータ) (2024-08-13T04:53:31Z) - Monetizing Currency Pair Sentiments through LLM Explainability [2.572906392867547]
大規模言語モデル(LLM)は、今日の組織のほとんどすべての領域において重要な役割を担います。
我々は,感情分析の妥当性を説明するために,LLMをポストホックモデルに依存しないツールとして活用する新しい手法を提案する。
本手法を金融分野に適用し,公開ニュースフィードデータと市場価格を融合した通貨対対価の予測を行う。
論文 参考訳(メタデータ) (2024-07-29T11:58:54Z) - Financial Statement Analysis with Large Language Models [0.0]
我々はGPT4に標準化された匿名の財務文書を提供し、モデルを解析するように指示する。
このモデルでは、財務アナリストが収益の変化を予測できる能力を上回っている。
GPTの予測に基づく貿易戦略は、他のモデルに基づく戦略よりもシャープ比とアルファ率が高い。
論文 参考訳(メタデータ) (2024-07-25T08:36:58Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - Ploutos: Towards interpretable stock movement prediction with financial
large language model [43.51934592920784]
PloutosはPloutosGenとPloutosGPTで構成される新しい金融フレームワークである。
PloutosGenには、テキストや数値など、さまざまなモーダルデータを分析し、異なる観点から定量的戦略を提供する、複数の主要な専門家が含まれている。
PloutosGPTのトレーニング戦略は、GPT-4を誘導して合理性を生成するリアビューミラープロンプト機構と、LLMを微調整するための動的トークン重み付け機構を活用する。
論文 参考訳(メタデータ) (2024-02-18T10:28:18Z) - Learning to Generate Explainable Stock Predictions using Self-Reflective
Large Language Models [54.21695754082441]
説明可能なストック予測を生成するために,LLM(Large Language Models)を教えるフレームワークを提案する。
反射剤は自己推論によって過去の株価の動きを説明する方法を学ぶ一方、PPOトレーナーは最も可能性の高い説明を生成するためにモデルを訓練する。
我々のフレームワークは従来のディープラーニング法とLLM法の両方を予測精度とマシューズ相関係数で上回ることができる。
論文 参考訳(メタデータ) (2024-02-06T03:18:58Z) - Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models [11.154814189699735]
大規模な言語モデル (LLM) は様々なNLPタスクにおいて優れた性能を示した。
本稿では,金融感情分析のためのLLMフレームワークを提案する。
提案手法の精度は15%から48%向上し,F1得点を得た。
論文 参考訳(メタデータ) (2023-10-06T05:40:23Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。