Sabi\'a: Portuguese Large Language Models
- URL: http://arxiv.org/abs/2304.07880v4
- Date: Thu, 9 Nov 2023 10:36:32 GMT
- Title: Sabi\'a: Portuguese Large Language Models
- Authors: Ramon Pires, Hugo Abonizio, Thales Sales Almeida, Rodrigo Nogueira
- Abstract summary: We show that monolingual pretraining on the target language significantly improves models already extensively trained on diverse corpora.
Few-shot evaluations on Poeta, a suite of 14 Portuguese datasets, reveal that our models outperform English-centric and multilingual counterparts by a significant margin.
- Score: 14.801853435122908
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the capabilities of language models continue to advance, it is conceivable
that "one-size-fits-all" model will remain as the main paradigm. For instance,
given the vast number of languages worldwide, many of which are low-resource,
the prevalent practice is to pretrain a single model on multiple languages. In
this paper, we add to the growing body of evidence that challenges this
practice, demonstrating that monolingual pretraining on the target language
significantly improves models already extensively trained on diverse corpora.
More specifically, we further pretrain GPT-J and LLaMA models on Portuguese
texts using 3% or less of their original pretraining budget. Few-shot
evaluations on Poeta, a suite of 14 Portuguese datasets, reveal that our models
outperform English-centric and multilingual counterparts by a significant
margin. Our best model, Sabi\'a-65B, performs on par with GPT-3.5-turbo. By
evaluating on datasets originally conceived in the target language as well as
translated ones, we study the contributions of language-specific pretraining in
terms of 1) capturing linguistic nuances and structures inherent to the target
language, and 2) enriching the model's knowledge about a domain or culture. Our
results indicate that the majority of the benefits stem from the
domain-specific knowledge acquired through monolingual pretraining.
Related papers
- Poro 34B and the Blessing of Multilinguality [3.270981284471548]
Poro 34B is a 34 billion parameter model trained for 1 trillion tokens of Finnish, English, and programming languages.
We show that a multilingual training approach can produce a model that substantially advances over the capabilities of existing models for Finnish.
arXiv Detail & Related papers (2024-04-02T11:34:12Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
This study investigates the dynamics of the multilingual pretraining process.
We probe checkpoints taken from throughout XLM-R pretraining, using a suite of linguistic tasks.
Our analysis shows that the model achieves high in-language performance early on, with lower-level linguistic skills acquired before more complex ones.
arXiv Detail & Related papers (2022-05-24T03:35:00Z) - Pre-training Data Quality and Quantity for a Low-Resource Language: New
Corpus and BERT Models for Maltese [4.4681678689625715]
We analyse the effect of pre-training with monolingual data for a low-resource language.
We present a newly created corpus for Maltese, and determine the effect that the pre-training data size and domain have on the downstream performance.
We compare two models on the new corpus: a monolingual BERT model trained from scratch (BERTu), and a further pre-trained multilingual BERT (mBERTu)
arXiv Detail & Related papers (2022-05-21T06:44:59Z) - Few-shot Learning with Multilingual Language Models [66.49496434282564]
We train multilingual autoregressive language models on a balanced corpus covering a diverse set of languages.
Our largest model sets new state of the art in few-shot learning in more than 20 representative languages.
We present a detailed analysis of where the model succeeds and fails, showing in particular that it enables cross-lingual in-context learning.
arXiv Detail & Related papers (2021-12-20T16:52:35Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
We evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages.
We show that, given a few English examples as context, pre-trained language models can predict not only English test samples but also non-English ones.
arXiv Detail & Related papers (2021-09-16T03:08:22Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
We generate language representation from multilingual pre-trained models and conduct linguistic analysis.
We cluster all the target languages into multiple groups and name each group as a representation sprachbund.
Experiments are conducted on cross-lingual benchmarks and significant improvements are achieved compared to strong baselines.
arXiv Detail & Related papers (2021-09-01T09:32:06Z) - On the Multilingual Capabilities of Very Large-Scale English Language
Models [0.0]
Generative Pre-trained Transformers (GPTs) have recently been scaled to unprecedented sizes in the history of machine learning.
In this work, we investigate the multilingual skills of GPT-3, focusing on one language that barely appears in the pre-training corpus, Catalan.
We find that the model shows an outstanding performance, particularly in generative tasks, with predictable limitations mostly in language understanding tasks but still with remarkable results given the zero-shot scenario.
arXiv Detail & Related papers (2021-08-30T16:18:50Z) - Towards Zero-shot Language Modeling [90.80124496312274]
We construct a neural model that is inductively biased towards learning human languages.
We infer this distribution from a sample of typologically diverse training languages.
We harness additional language-specific side information as distant supervision for held-out languages.
arXiv Detail & Related papers (2021-08-06T23:49:18Z) - Are Multilingual Models the Best Choice for Moderately Under-resourced
Languages? A Comprehensive Assessment for Catalan [0.05277024349608833]
This work focuses on Catalan with the aim of exploring what extent a medium-sized monolingual language model is competitive with state-of-the-art large multilingual models.
We build a clean, high-quality textual Catalan corpus (CaText), train a Transformer-based language model for Catalan (BERTa), and devise a thorough evaluation in a diversity of settings.
The result is a new benchmark, the Catalan Language Understanding Benchmark (CLUB), which we publish as an open resource.
arXiv Detail & Related papers (2021-07-16T13:52:01Z) - Parsing with Multilingual BERT, a Small Corpus, and a Small Treebank [46.626315158735615]
Pretrained multilingual contextual representations have shown great success, but due to the limits of their pretraining data, their benefits do not apply equally to all language varieties.
This presents a challenge for language varieties unfamiliar to these models, whose labeled emphand unlabeled data is too limited to train a monolingual model effectively.
We propose the use of additional language-specific pretraining and vocabulary augmentation to adapt multilingual models to low-resource settings.
arXiv Detail & Related papers (2020-09-29T16:12:52Z) - Multilingual Translation with Extensible Multilingual Pretraining and
Finetuning [77.33262578776291]
Previous work has demonstrated that machine translation systems can be created by finetuning on bitext.
We show that multilingual translation models can be created through multilingual finetuning.
We demonstrate that pretrained models can be extended to incorporate additional languages without loss of performance.
arXiv Detail & Related papers (2020-08-02T05:36:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.