論文の概要: Political corpus creation through automatic speech recognition on EU
debates
- arxiv url: http://arxiv.org/abs/2304.08137v1
- Date: Mon, 17 Apr 2023 10:41:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 15:47:21.957514
- Title: Political corpus creation through automatic speech recognition on EU
debates
- Title(参考訳): EU討論における自動音声認識による政治コーパス作成
- Authors: Hugo de Vos and Suzan Verberne
- Abstract要約: 我々は、EU議会のLIBE委員会の書き起こされたコーパスを提示し、合計360万のランニングワードを提示する。
EUの議会委員会の会合は、政治科学者にとって潜在的に価値のある情報源であるが、データは限られたメタデータと共に音声記録としてのみ公開されているため、簡単には入手できない。
我々は,会議の音声記録の正確なテキスト書き起こしを行うために,最も適切な自動音声認識(ASR)モデルについて検討した。
- 参考スコア(独自算出の注目度): 4.670305538969914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a transcribed corpus of the LIBE committee of the
EU parliament, totalling 3.6 Million running words. The meetings of
parliamentary committees of the EU are a potentially valuable source of
information for political scientists but the data is not readily available
because only disclosed as speech recordings together with limited metadata. The
meetings are in English, partly spoken by non-native speakers, and partly
spoken by interpreters. We investigated the most appropriate Automatic Speech
Recognition (ASR) model to create an accurate text transcription of the audio
recordings of the meetings in order to make their content available for
research and analysis. We focused on the unsupervised domain adaptation of the
ASR pipeline. Building on the transformer-based Wav2vec2.0 model, we
experimented with multiple acoustic models, language models and the addition of
domain-specific terms. We found that a domain-specific acoustic model and a
domain-specific language model give substantial improvements to the ASR output,
reducing the word error rate (WER) from 28.22 to 17.95. The use of
domain-specific terms in the decoding stage did not have a positive effect on
the quality of the ASR in terms of WER. Initial topic modelling results
indicated that the corpus is useful for downstream analysis tasks. We release
the resulting corpus and our analysis pipeline for future research.
- Abstract(参考訳): 本稿では、eu議会のlibe委員会の書き起こされたコーパスについて、合計で360万語を収録した。
EUの議会委員会の会合は、政治科学者にとって潜在的に価値のある情報源であるが、データは限られたメタデータと共に音声記録としてのみ公開されているため、簡単には入手できない。
会議は英語で行われ、一部は非母語話者が話し、一部は通訳が話す。
我々は,会議の音声記録の正確なテキスト書き起こしを行うために,最も適切な自動音声認識(ASR)モデルについて検討した。
我々は、asrパイプラインの教師なしのドメイン適応に注目した。
変換器を用いたWav2vec2.0モデルを用いて,複数の音響モデル,言語モデル,ドメイン固有項の追加実験を行った。
その結果、ドメイン固有音響モデルとドメイン固有言語モデルにより、ASR出力が大幅に改善され、単語誤り率(WER)が28.22から17.95に減少した。
復号段階でのドメイン固有項の使用は、WERの観点からはASRの品質に肯定的な影響を与えなかった。
初期のトピックモデリングの結果,コーパスは下流分析作業に有用であることが示唆された。
得られたコーパスと分析パイプラインを今後の研究のためにリリースします。
関連論文リスト
- Advancing Topic Segmentation of Broadcasted Speech with Multilingual Semantic Embeddings [2.615008111842321]
セマンティック音声エンコーダを用いたトピックセグメンテーションのためのエンドツーエンドスキームを提案する。
そこで本研究では,1000時間の公開録音を特徴とするデータセットを用いて,音声ニューストピックセグメンテーションのための新しいベンチマークを提案する。
この結果から,従来のパイプライン方式では英語のP_k$スコアが0.2431であるのに対して,エンドツーエンドモデルは競争力のあるP_k$スコアが0.2564であることがわかった。
論文 参考訳(メタデータ) (2024-09-10T05:24:36Z) - On decoder-only architecture for speech-to-text and large language model
integration [59.49886892602309]
Speech-LLaMAは、音声情報をテキストベースの大規模言語モデルに効果的に組み込む新しいアプローチである。
我々は多言語音声からテキストへの翻訳タスクの実験を行い、強いベースラインよりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2023-07-08T06:47:58Z) - Cross-lingual Text-To-Speech with Flow-based Voice Conversion for
Improved Pronunciation [11.336431583289382]
本稿では,エンドツーエンドの言語間テキスト合成手法を提案する。
本来の話者の言語によらず、対象言語の発音を維持することを目的としている。
論文 参考訳(メタデータ) (2022-10-31T12:44:53Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - On Prosody Modeling for ASR+TTS based Voice Conversion [82.65378387724641]
音声変換において、最新の音声変換チャレンジ(VCC)2020における有望な結果を示すアプローチは、まず、ソース音声を基礎となる言語内容に書き起こすために、自動音声認識(ASR)モデルを使用することである。
このようなパラダイムはASR+TTSと呼ばれ、音声の自然性と変換の類似性において重要な役割を果たす韻律のモデル化を見落としている。
本稿では,ターゲットテキスト予測(TTP)と呼ばれる,ターゲット話者に依存した言語表現から直接韻律を予測することを提案する。
論文 参考訳(メタデータ) (2021-07-20T13:30:23Z) - Seed Words Based Data Selection for Language Model Adaptation [11.59717828860318]
本稿では,テキストコーパスから文を自動的に選択する手法を提案する。
ベースラインモデルの語彙は拡張・調整され、OOVレートが低下する。
異なる測定値(OOVレート, WER, 精度, リコール)を用いて, 提案手法の有効性を示す。
論文 参考訳(メタデータ) (2021-07-20T12:08:27Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
ワンショット音声変換は、音声表現のアンタングルメントによって効果的に実現できる。
コンテンツエンコーディングにはベクトル量子化(VQ)を使用し、トレーニング中に相互情報(MI)を相関指標として導入する。
実験結果は,提案手法が効果的に非絡み合った音声表現を学習する際の優位性を反映している。
論文 参考訳(メタデータ) (2021-06-18T13:50:38Z) - Generative Spoken Language Modeling from Raw Audio [42.153136032037175]
生成音声言語モデリングは、(テキストやラベルなしで)生音声のみから、言語の音響的特徴と言語的特徴を共同で学習することを伴う
本稿では,2つのエンドツーエンドタスクの音響的品質と言語的品質の観点から,生成した出力を自動的に評価する指標を提案する。
我々は、離散音声エンコーダ(離散音声単位を返却する)、生成言語モデル(擬似テキスト単位で学習する)、音声デコーダからなるベースラインシステムをテストする。
論文 参考訳(メタデータ) (2021-02-01T21:41:40Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z) - Contextualized Spoken Word Representations from Convolutional
Autoencoders [2.28438857884398]
本稿では,畳み込み型オートエンコーダに基づくニューラルアーキテクチャを提案し,様々な長さの音声単語の構文的かつ意味論的に適切な文脈化表現をモデル化する。
提案モデルでは,他の2つの言語モデルと比較して頑健性を示すことができた。
論文 参考訳(メタデータ) (2020-07-06T16:48:11Z) - Unsupervised Cross-Modal Audio Representation Learning from Unstructured
Multilingual Text [69.55642178336953]
教師なし音声表現学習へのアプローチを提案する。
3重項ニューラルネットワークアーキテクチャに基づいて、意味論的に関連付けられたクロスモーダル情報を用いて、音声トラック関連性を推定する。
我々のアプローチは、様々なアノテーションスタイルと、このコレクションの異なる言語に不変であることを示す。
論文 参考訳(メタデータ) (2020-03-27T07:37:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。