論文の概要: Decentralized Learning Made Easy with DecentralizePy
- arxiv url: http://arxiv.org/abs/2304.08322v1
- Date: Mon, 17 Apr 2023 14:42:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 14:51:38.027480
- Title: Decentralized Learning Made Easy with DecentralizePy
- Title(参考訳): Decentralized LearningがDecentralizePyで簡単に
- Authors: Akash Dhasade, Anne-Marie Kermarrec, Rafael Pires, Rishi Sharma, Milos
Vujasinovic
- Abstract要約: 分散学習(DL)は、スケーラビリティ、プライバシ、フォールトトレランスの面でその潜在的な利点で有名になった。
本稿では,大規模学習ネットワークを任意のトポロジでエミュレート可能な分散機械学習フレームワークDecentralizePyを提案する。
いくつかのトポロジ上にスパーシフィケーションやセキュアアグリゲーションといったテクニックを配置することで、分散Pyの能力を実証する。
- 参考スコア(独自算出の注目度): 3.1848820580333737
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized learning (DL) has gained prominence for its potential benefits
in terms of scalability, privacy, and fault tolerance. It consists of many
nodes that coordinate without a central server and exchange millions of
parameters in the inherently iterative process of machine learning (ML)
training. In addition, these nodes are connected in complex and potentially
dynamic topologies. Assessing the intricate dynamics of such networks is
clearly not an easy task. Often in literature, researchers resort to simulated
environments that do not scale and fail to capture practical and crucial
behaviors, including the ones associated to parallelism, data transfer, network
delays, and wall-clock time. In this paper, we propose DecentralizePy, a
distributed framework for decentralized ML, which allows for the emulation of
large-scale learning networks in arbitrary topologies. We demonstrate the
capabilities of DecentralizePy by deploying techniques such as sparsification
and secure aggregation on top of several topologies, including dynamic networks
with more than one thousand nodes.
- Abstract(参考訳): 分散学習(DL)は、スケーラビリティ、プライバシ、フォールトトレランスの面でその潜在的な利点で有名になった。
中央サーバーなしで調整し、機械学習(ML)トレーニングの本質的に反復的なプロセスで数百万のパラメータを交換する多くのノードで構成されています。
さらに、これらのノードは複雑で潜在的に動的トポロジで接続される。
このようなネットワークの複雑なダイナミクスを評価するのは容易ではない。
研究者は、しばしば、並列性、データ転送、ネットワーク遅延、壁時計時間など、拡張性がなく、実用的で重要な振る舞いを捉えられない環境をシミュレートする。
本稿では、任意のトポロジにおける大規模学習ネットワークのエミュレーションを可能にする分散型MLの分散フレームワークであるDecentralizePyを提案する。
我々は,1000ノード以上の動的ネットワークを含む複数のトポロジ上に,スパーシフィケーションやセキュアアグリゲーションなどの手法を展開することにより,分散化の能力を実証する。
関連論文リスト
- Impact of Network Topology on Byzantine Resilience in Decentralized Federated Learning [0.0]
本研究では、複雑な大規模ネットワーク構造における最先端のビザンチン-ロバスト凝集法の効果について検討する。
最先端のビザンツのロバスト・アグリゲーション戦略は、大規模な非完全連結ネットワークではレジリエントではないことが判明した。
論文 参考訳(メタデータ) (2024-07-06T17:47:44Z) - DRACO: Decentralized Asynchronous Federated Learning over Continuous Row-Stochastic Network Matrices [7.389425875982468]
DRACOは、行確率ゴシップ無線ネットワーク上での分散非同期Descent(SGD)の新しい手法である。
我々のアプローチは、分散ネットワーク内のエッジデバイスが、連続したタイムラインに沿ってローカルトレーニングとモデル交換を行うことを可能にする。
我々の数値実験は提案手法の有効性を裏付けるものである。
論文 参考訳(メタデータ) (2024-06-19T13:17:28Z) - Initialisation and Network Effects in Decentralised Federated Learning [1.5961625979922607]
分散フェデレーション学習は、通信デバイスの分散ネットワーク上で、個々の機械学習モデルの協調トレーニングを可能にする。
このアプローチは、集中的な調整を避け、データのプライバシを高め、単一障害点のリスクを取り除く。
本稿では,基盤となる通信ネットワークの固有ベクトル集中度分布に基づく,ニューラルネットワークの非協調初期化戦略を提案する。
論文 参考訳(メタデータ) (2024-03-23T14:24:36Z) - Decentralized Training of Foundation Models in Heterogeneous
Environments [77.47261769795992]
GPT-3 や PaLM のようなトレーニング基盤モデルは、非常に高価である。
ヘテロジニアスネットワーク上での分散型システムにおけるモデル並列化を用いた大規模基盤モデルのトレーニングに関する最初の研究について述べる。
論文 参考訳(メタデータ) (2022-06-02T20:19:51Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
機械学習(ML)は、巨大なIoT(Internet of Things)ベースのインテリジェントでユビキタスなコンピューティングのビッグデータ駆動モデリングと分析のための重要なテクニックである。
急成長するアプリケーションやデータ量にとって、分散学習は有望な新興パラダイムである。
本稿では,多くのユーザデバイスに分散した分散システム上でMLモデルをトレーニングする問題について検討する。
論文 参考訳(メタデータ) (2022-02-07T15:04:15Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
本研究では,分散ネットワーク構造を持つローカルデータセットの局所的(あるいはパーソナライズされた)モデルを学習するための最適化手法について検討する。
我々の主要な概念的貢献は、総変動最小化(GTV)としてフェデレーション学習を定式化することである。
私たちのアルゴリズムの主な貢献は、完全に分散化されたフェデレーション学習アルゴリズムです。
論文 参考訳(メタデータ) (2021-05-26T18:07:19Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - Decentralized Deep Learning using Momentum-Accelerated Consensus [15.333413663982874]
複数のエージェントが協調して分散データセットから学習する分散ディープラーニングの問題を考える。
本稿では,エージェントが固定された通信トポロジ上で対話する分散ディープラーニングアルゴリズムを提案し,解析する。
本アルゴリズムは,勾配に基づくプロトコルで用いられるヘビーボール加速度法に基づく。
論文 参考訳(メタデータ) (2020-10-21T17:39:52Z) - A Low Complexity Decentralized Neural Net with Centralized Equivalence
using Layer-wise Learning [49.15799302636519]
我々は、分散処理ノード(労働者)で最近提案された大規模ニューラルネットワークをトレーニングするために、低複雑性分散学習アルゴリズムを設計する。
我々の設定では、トレーニングデータは作業者間で分散されるが、プライバシやセキュリティ上の懸念からトレーニングプロセスでは共有されない。
本研究では,データが一箇所で利用可能であるかのように,等価な学習性能が得られることを示す。
論文 参考訳(メタデータ) (2020-09-29T13:08:12Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z) - Federated Learning with Cooperating Devices: A Consensus Approach for
Massive IoT Networks [8.456633924613456]
分散システムにおける機械学習モデルをトレーニングするための新しいパラダイムとして、フェデレートラーニング(FL)が登場している。
提案するFLアルゴリズムは,ネットワーク内のデータ操作を行うデバイスとの協調を利用して,完全に分散された(あるいはサーバレス)学習手法を提案する。
このアプローチは、分散接続とコンピューティングを特徴とするネットワークを超えて、5G 内で FL を統合するための基盤となる。
論文 参考訳(メタデータ) (2019-12-27T15:16:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。