論文の概要: Decentralized Deep Learning using Momentum-Accelerated Consensus
- arxiv url: http://arxiv.org/abs/2010.11166v2
- Date: Sat, 28 Nov 2020 17:06:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 23:33:25.899812
- Title: Decentralized Deep Learning using Momentum-Accelerated Consensus
- Title(参考訳): Momentum-Accelerated Consensus を用いた分散ディープラーニング
- Authors: Aditya Balu, Zhanhong Jiang, Sin Yong Tan, Chinmay Hedge, Young M Lee,
Soumik Sarkar
- Abstract要約: 複数のエージェントが協調して分散データセットから学習する分散ディープラーニングの問題を考える。
本稿では,エージェントが固定された通信トポロジ上で対話する分散ディープラーニングアルゴリズムを提案し,解析する。
本アルゴリズムは,勾配に基づくプロトコルで用いられるヘビーボール加速度法に基づく。
- 参考スコア(独自算出の注目度): 15.333413663982874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of decentralized deep learning where multiple agents
collaborate to learn from a distributed dataset. While there exist several
decentralized deep learning approaches, the majority consider a central
parameter-server topology for aggregating the model parameters from the agents.
However, such a topology may be inapplicable in networked systems such as
ad-hoc mobile networks, field robotics, and power network systems where direct
communication with the central parameter server may be inefficient. In this
context, we propose and analyze a novel decentralized deep learning algorithm
where the agents interact over a fixed communication topology (without a
central server). Our algorithm is based on the heavy-ball acceleration method
used in gradient-based optimization. We propose a novel consensus protocol
where each agent shares with its neighbors its model parameters as well as
gradient-momentum values during the optimization process. We consider both
strongly convex and non-convex objective functions and theoretically analyze
our algorithm's performance. We present several empirical comparisons with
competing decentralized learning methods to demonstrate the efficacy of our
approach under different communication topologies.
- Abstract(参考訳): 複数のエージェントが協調して分散データセットから学習する分散ディープラーニングの問題を考える。
分散ディープラーニングのアプローチはいくつか存在するが、大多数はエージェントからモデルパラメータを集約するために、中央のパラメータ-サーバトポロジを考慮する。
しかし、そのようなトポロジは、アドホックなモバイルネットワーク、フィールドロボティクス、中央パラメータサーバとの直接通信が非効率な電力ネットワークシステムといったネットワークシステムでは適用できない可能性がある。
本研究では,エージェントが(中央サーバを使わずに)固定された通信トポロジ上で相互作用する分散ディープラーニングアルゴリズムを提案し,解析する。
本アルゴリズムは,勾配に基づく最適化において用いられる重球加速度法に基づいている。
本稿では,各エージェントとそのモデルパラメータ,および最適化過程における勾配運動量値を共有する新しいコンセンサスプロトコルを提案する。
我々は,強い凸関数と非凸関数の両方を考慮し,アルゴリズムの性能を理論的に解析する。
本稿では,分散学習手法と実験的な比較を行い,異なるコミュニケーショントポロジー下でのアプローチの有効性を示す。
関連論文リスト
- Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
本稿では,Catalytics Accelerationを導入し,DFedCataと呼ばれる促進型分散フェデレート学習アルゴリズムを提案する。
DFedCataは、パラメータの不整合に対処するMoreauエンベロープ関数と、アグリゲーションフェーズを加速するNesterovの外挿ステップの2つの主要コンポーネントで構成されている。
実験により, CIFAR10/100における収束速度と一般化性能の両面において, 提案アルゴリズムの利点を実証した。
論文 参考訳(メタデータ) (2024-10-09T06:17:16Z) - AdaGossip: Adaptive Consensus Step-size for Decentralized Deep Learning with Communication Compression [11.290935303784208]
AdaGossipは、隣り合うエージェント間の圧縮モデルの違いに基づいて、コンセンサスのサイズを適応的に調整する新しい手法である。
提案手法は,通信圧縮による分散学習における最先端の手法と比較して,優れた性能を実現する。
論文 参考訳(メタデータ) (2024-04-09T00:43:45Z) - Online Distributed Learning with Quantized Finite-Time Coordination [0.4910937238451484]
私たちの設定では、エージェントのセットは、ストリーミングデータから学習モデルを協調的にトレーニングする必要があります。
本稿では,量子化された有限時間協調プロトコルに依存する分散アルゴリズムを提案する。
提案アルゴリズムの性能を,オンラインソリューションからの平均距離の観点から解析する。
論文 参考訳(メタデータ) (2023-07-13T08:36:15Z) - Decentralized Learning Made Easy with DecentralizePy [3.1848820580333737]
分散学習(DL)は、スケーラビリティ、プライバシ、フォールトトレランスの面でその潜在的な利点で有名になった。
本稿では,大規模学習ネットワークを任意のトポロジでエミュレート可能な分散機械学習フレームワークDecentralizePyを提案する。
いくつかのトポロジ上にスパーシフィケーションやセキュアアグリゲーションといったテクニックを配置することで、分散Pyの能力を実証する。
論文 参考訳(メタデータ) (2023-04-17T14:42:33Z) - DESTRESS: Computation-Optimal and Communication-Efficient Decentralized
Nonconvex Finite-Sum Optimization [43.31016937305845]
インターネット・オブ・シング、ネットワークセンシング、自律システム、有限サム最適化のための分散アルゴリズムのためのフェデレーション学習。
非有限サム最適化のためのDecentralized STochastic Recursive MethodDESTRESSを開発した。
詳細な理論的および数値的な比較は、DESTRESSが事前の分散アルゴリズムにより改善されていることを示している。
論文 参考訳(メタデータ) (2021-10-04T03:17:41Z) - Consensus Control for Decentralized Deep Learning [72.50487751271069]
ディープラーニングモデルの分散トレーニングは、ネットワーク上のデバイス上での学習と、大規模計算クラスタへの効率的なスケーリングを可能にする。
理論上、トレーニングコンセンサス距離が重要な量よりも低い場合、分散化されたトレーニングは集中的なトレーニングよりも早く収束することを示す。
私たちの経験的な洞察は、パフォーマンス低下を軽減するために、より分散化されたトレーニングスキームの原則設計を可能にします。
論文 参考訳(メタデータ) (2021-02-09T13:58:33Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
セキュリティ要件の高いアプリケーションを含むビッグデータは、モバイルデバイスやドローン、車両など、複数の異種デバイスに収集され、格納されることが多い。
通信コストとセキュリティ要件の制限のため、核融合センターにデータを集約するのではなく、分散的に情報を抽出することが最重要となる。
分散エッジノードを介してデータを局所的に処理するマルチエージェントシステムにおいて,モデルパラメータを学習する問題を考える。
分散学習モデルを開発するために,乗算器アルゴリズムの最小バッチ交互方向法(ADMM)のクラスについて検討した。
論文 参考訳(メタデータ) (2020-10-02T10:41:59Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
センサローカライゼーションの現実問題において,ネットワークトポロジと異なるアルゴリズムの収束率の関係について検討する。
また、ADMMと持ち上げマルコフ連鎖の間の興味深い関係を示すとともに、その収束を明示的に特徴づける。
論文 参考訳(メタデータ) (2020-09-05T21:44:39Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
本稿では,モンテカルロ木探索に基づくトレーニング可能なオンライン分散計画アルゴリズムを提案する。
深層学習と畳み込みニューラルネットワークを用いて正確なポリシー近似を作成可能であることを示す。
論文 参考訳(メタデータ) (2020-03-19T13:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。