論文の概要: New Product Development (NPD) through Social Media-based Analysis by
Comparing Word2Vec and BERT Word Embeddings
- arxiv url: http://arxiv.org/abs/2304.08369v1
- Date: Mon, 17 Apr 2023 15:32:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 14:30:29.905293
- Title: New Product Development (NPD) through Social Media-based Analysis by
Comparing Word2Vec and BERT Word Embeddings
- Title(参考訳): Word2Vec と BERT ワード埋め込みの比較による新商品開発(NPD)
- Authors: Princessa Cintaqia and Matheus Inoue
- Abstract要約: Word2Vec と BERT という2つの単語埋め込み技術を評価し,感情分析と意見検出における最も優れた手法を同定した。
BERT単語の埋め込みと平衡ランダムフォレストを組み合わせることで、感情分析と意見検出の両方において最も正確な単一モデルが得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study introduces novel methods for sentiment and opinion classification
of tweets to support the New Product Development (NPD) process. Two popular
word embedding techniques, Word2Vec and BERT, were evaluated as inputs for
classic Machine Learning and Deep Learning algorithms to identify the
best-performing approach in sentiment analysis and opinion detection with
limited data. The results revealed that BERT word embeddings combined with
Balanced Random Forest yielded the most accurate single model for both
sentiment analysis and opinion detection on a use case. Additionally, the paper
provides feedback for future product development performing word graph analysis
of the tweets with same sentiment to highlight potential areas of improvement.
- Abstract(参考訳): 本研究では,新しい製品開発(NPD)プロセスを支援するために,ツイートの感情分類と意見分類を行う新しい手法を提案する。
Word2Vec と BERT という2つの単語埋め込み技術は、感情分析と限られたデータによる意見検出において最も優れたアプローチを特定するために、古典的な機械学習アルゴリズムとディープラーニングアルゴリズムの入力として評価された。
その結果,BERT単語の埋め込みと平衡ランダムフォレストが組み合わされた場合,感情分析と意見検出の両面で最も正確な単一モデルが得られた。
さらに,同感のつぶやきをワードグラフで分析し,改善の可能性を強調し,今後の製品開発へのフィードバックを提供する。
関連論文リスト
- Beyond Coarse-Grained Matching in Video-Text Retrieval [50.799697216533914]
きめ細かい評価のための新しいアプローチを導入する。
テストキャプションを自動的に生成することで,既存のデータセットにアプローチを適用することができる。
きめ細かい評価実験は、このアプローチがきめ細かな違いを理解するモデルの能力を高めることを実証している。
論文 参考訳(メタデータ) (2024-10-16T09:42:29Z) - Explaining Hate Speech Classification with Model Agnostic Methods [0.9990687944474738]
本研究の目的は、ヘイトスピーチ予測と、その決定を支援するためにシステムによって生成された説明とのギャップを埋めることである。
これは、まずテキストの分類を予測し、その後、ポストホック、モデル非依存、代理的解釈可能性アプローチを提供することによって達成されている。
論文 参考訳(メタデータ) (2023-05-30T19:52:56Z) - Pre-trained Embeddings for Entity Resolution: An Experimental Analysis
[Experiment, Analysis & Benchmark] [65.11858854040544]
我々は、17の確立されたベンチマークデータセットに対して、12のポピュラー言語モデルの徹底的な実験分析を行う。
まず、全ての入力エンティティを高密度な埋め込みベクトルに変換するためのベクトル化のオーバーヘッドを評価する。
次に,そのブロッキング性能を調査し,詳細なスケーラビリティ解析を行い,最先端のディープラーニングベースのブロッキング手法と比較する。
第3に、教師なしマッチングと教師なしマッチングの両方に対して、相対的な性能で締めくくります。
論文 参考訳(メタデータ) (2023-04-24T08:53:54Z) - BERT-Based Combination of Convolutional and Recurrent Neural Network for
Indonesian Sentiment Analysis [0.0]
本研究は、インドネシアの感情分析のためのBERT表現を用いた従来のハイブリッドディープラーニングを拡張した。
シミュレーションにより,BERT表現はすべてのハイブリッドアーキテクチャの精度を向上させることが示された。
論文 参考訳(メタデータ) (2022-11-10T00:32:40Z) - Just Rank: Rethinking Evaluation with Word and Sentence Similarities [105.5541653811528]
埋め込みの本質的な評価は かなり遅れています そして過去10年間 重要な更新は行われていません
本稿ではまず,単語と文の埋め込み評価におけるゴールドスタンダードとして意味的類似性を用いた問題点を指摘する。
本稿では,下流タスクとより強い相関関係を示すEvalRankという本質的な評価手法を提案する。
論文 参考訳(メタデータ) (2022-03-05T08:40:05Z) - A Comparative Study of Transformers on Word Sense Disambiguation [0.0]
本稿では,ニューラルネットワークを用いた埋め込みシステムの文脈化能力について比較検討する。
本稿では,2つのWord Sense Disambiguation (WSD)タスクであるSensEval-2とSensEval-3を用いて,その文脈化能力を評価する。
実験の結果,提案手法は両WSDタスクにおける現状よりも優れた結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-11-30T14:10:22Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - Introducing Syntactic Structures into Target Opinion Word Extraction
with Deep Learning [89.64620296557177]
目的語抽出のためのディープラーニングモデルに文の構文構造を組み込むことを提案する。
また,ディープラーニングモデルの性能向上のために,新たな正規化手法を導入する。
提案モデルは,4つのベンチマークデータセット上での最先端性能を広範囲に解析し,達成する。
論文 参考訳(メタデータ) (2020-10-26T07:13:17Z) - Improving BERT Performance for Aspect-Based Sentiment Analysis [3.5493798890908104]
Aspect-Based Sentiment Analysis (ABSA)は、市場製品に関する消費者の意見を調査する。
製品レビューで表現された感情のタイプだけでなく、感情のタイプも調査する。
本稿では,提案モデルを適用することで,BERTモデルのさらなるトレーニングの必要性がなくなることを示す。
論文 参考訳(メタデータ) (2020-10-22T13:52:18Z) - Latent Opinions Transfer Network for Target-Oriented Opinion Words
Extraction [63.70885228396077]
資源豊富なレビュー評価分類データセットから低リソースタスクTOWEへ意見知識を伝達する新しいモデルを提案する。
我々のモデルは、他の最先端手法よりも優れた性能を達成し、意見の知識を伝達することなく、ベースモデルを大幅に上回る。
論文 参考訳(メタデータ) (2020-01-07T11:50:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。