CyFormer: Accurate State-of-Health Prediction of Lithium-Ion Batteries
via Cyclic Attention
- URL: http://arxiv.org/abs/2304.08502v1
- Date: Mon, 17 Apr 2023 02:16:40 GMT
- Title: CyFormer: Accurate State-of-Health Prediction of Lithium-Ion Batteries
via Cyclic Attention
- Authors: Zhiqiang Nie, Jiankun Zhao, Qicheng Li, Yong Qin
- Abstract summary: We present a transformer-based cyclic time sequence model for State-of-Health (SoH) prediction.
Our method attains an MAE of 0.75% with only 10% data for fine-tuning on a testing battery.
- Score: 1.4542411354617986
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Predicting the State-of-Health (SoH) of lithium-ion batteries is a
fundamental task of battery management systems on electric vehicles. It aims at
estimating future SoH based on historical aging data. Most existing deep
learning methods rely on filter-based feature extractors (e.g., CNN or Kalman
filters) and recurrent time sequence models. Though efficient, they generally
ignore cyclic features and the domain gap between training and testing
batteries. To address this problem, we present CyFormer, a transformer-based
cyclic time sequence model for SoH prediction. Instead of the conventional
CNN-RNN structure, we adopt an encoder-decoder architecture. In the encoder,
row-wise and column-wise attention blocks effectively capture intra-cycle and
inter-cycle connections and extract cyclic features. In the decoder, the SoH
queries cross-attend to these features to form the final predictions. We
further utilize a transfer learning strategy to narrow the domain gap between
the training and testing set. To be specific, we use fine-tuning to shift the
model to a target working condition. Finally, we made our model more efficient
by pruning. The experiment shows that our method attains an MAE of 0.75\% with
only 10\% data for fine-tuning on a testing battery, surpassing prior methods
by a large margin. Effective and robust, our method provides a potential
solution for all cyclic time sequence prediction tasks.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Finding Transformer Circuits with Edge Pruning [71.12127707678961]
We propose Edge Pruning as an effective and scalable solution to automated circuit discovery.
Our method finds circuits in GPT-2 that use less than half the number of edges compared to circuits found by previous methods.
Thanks to its efficiency, we scale Edge Pruning to CodeLlama-13B, a model over 100x the scale that prior methods operate on.
arXiv Detail & Related papers (2024-06-24T16:40:54Z) - PreRoutGNN for Timing Prediction with Order Preserving Partition: Global
Circuit Pre-training, Local Delay Learning and Attentional Cell Modeling [84.34811206119619]
We propose a two-stage approach to pre-routing timing prediction.
First, we propose global circuit training to pre-train a graph auto-encoder that learns the global graph embedding from circuit netlist.
Second, we use a novel node updating scheme for message passing on GCN, following the topological sorting sequence of the learned graph embedding and circuit graph.
Experiments on 21 real world circuits achieve a new SOTA R2 of 0.93 for slack prediction, which is significantly surpasses 0.59 by previous SOTA method.
arXiv Detail & Related papers (2024-02-27T02:23:07Z) - Enhanced Gaussian Process Dynamical Models with Knowledge Transfer for
Long-term Battery Degradation Forecasting [0.9208007322096533]
Predicting the end-of-life or remaining useful life of batteries in electric vehicles is a critical and challenging problem.
A number of algorithms have incorporated features that are available from data collected by battery management systems.
We develop a highly-accurate method that can overcome this limitation.
arXiv Detail & Related papers (2022-12-03T12:59:51Z) - Transfer Learning and Vision Transformer based State-of-Health
prediction of Lithium-Ion Batteries [1.2468700211588883]
Accurately predicting the state of health (SOH) can not only ease the anxiety of users about the battery life but also provide important information for the management of the battery.
This paper presents a prediction method for SOH based on Vision Transformer (ViT) model.
arXiv Detail & Related papers (2022-09-07T16:54:15Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Data Driven Prediction of Battery Cycle Life Before Capacity Degradation [0.0]
This paper utilizes the data and methods implemented by Kristen A. Severson, et al, to explore the methodologies that the research team used.
The fundamental effort is to find out if machine learning techniques may be trained to use early life cycle data in order to accurately predict battery capacity.
arXiv Detail & Related papers (2021-10-19T01:35:12Z) - Comparing seven methods for state-of-health time series prediction for
the lithium-ion battery packs of forklifts [1.1470070927586016]
This paper demonstrates the capabilities of gradient boosting regression for predicting the state-of-health timeseries.
We are in possession of a unique data set of 45 lithium-ion battery packs with large variation in the data.
arXiv Detail & Related papers (2021-07-06T10:52:56Z) - A Dynamic Battery State-of-Health Forecasting Model for Electric Trucks:
Li-Ion Batteries Case-Study [1.1470070927586016]
This paper concerns the machine-learning-enabled state-of-health (SoH) prognosis for Li-ion batteries in electric trucks.
We propose autoregressive integrated modeling average (ARIMA) and supervised learning (bagging with decision tree as the base estimator) for forecasting the battery SoH.
arXiv Detail & Related papers (2021-03-30T12:19:21Z) - Superiority of Simplicity: A Lightweight Model for Network Device
Workload Prediction [58.98112070128482]
We propose a lightweight solution for series prediction based on historic observations.
It consists of a heterogeneous ensemble method composed of two models - a neural network and a mean predictor.
It achieves an overall $R2$ score of 0.10 on the available FedCSIS 2020 challenge dataset.
arXiv Detail & Related papers (2020-07-07T15:44:16Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.