Remaining Useful Life Prediction for Batteries Utilizing an Explainable AI Approach with a Predictive Application for Decision-Making
- URL: http://arxiv.org/abs/2409.17931v2
- Date: Thu, 30 Jan 2025 14:48:00 GMT
- Title: Remaining Useful Life Prediction for Batteries Utilizing an Explainable AI Approach with a Predictive Application for Decision-Making
- Authors: Biplov Paneru, Bipul Thapa, Durga Prasad Mainali, Bishwash Paneru, Krishna Bikram Shah,
- Abstract summary: We develop machine learning-based models to predict and classify battery RUL.<n>The proposed TLE model consistently outperforms baseline models in RMSE, MAE, and R squared error.<n>XGBoost achieves an impressive 99% classification accuracy, validated through cross-validation techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately estimating the Remaining Useful Life (RUL) of a battery is essential for determining its lifespan and recharge requirements. In this work, we develop machine learning-based models to predict and classify battery RUL. We introduce a two-level ensemble learning (TLE) framework and a CNN+MLP hybrid model for RUL prediction, comparing their performance against traditional, deep, and hybrid machine learning models. Our analysis evaluates various models for both prediction and classification while incorporating interpretability through SHAP. The proposed TLE model consistently outperforms baseline models in RMSE, MAE, and R squared error, demonstrating its superior predictive capabilities. Additionally, the XGBoost classifier achieves an impressive 99% classification accuracy, validated through cross-validation techniques. The models effectively predict relay-based charging triggers, enabling automated and energy-efficient charging processes. This automation reduces energy consumption and enhances battery performance by optimizing charging cycles. SHAP interpretability analysis highlights the cycle index and charging parameters as the most critical factors influencing RUL. To improve accessibility, we developed a Tkinter-based GUI that allows users to input new data and predict RUL in real time. This practical solution supports sustainable battery management by enabling data-driven decisions about battery usage and maintenance, contributing to energy-efficient and innovative battery life prediction.
Related papers
- DLinear-based Prediction of Remaining Useful Life of Lithium-Ion Batteries: Feature Engineering through Explainable Artificial Intelligence [21.867940190460704]
The Remaining Useful Life (RUL) of lithium-ion batteries is essential for ensuring safety, reducing maintenance costs, and optimizing usage.
This study introduces an accurate RUL prediction approach based on feature engineering and DLinear, applied to the dataset from NASA's Prognostics Center of Excellence.
arXiv Detail & Related papers (2025-01-20T15:28:20Z) - Battery GraphNets : Relational Learning for Lithium-ion Batteries(LiBs) Life Estimation [0.0]
We present the Battery GraphNets framework that jointly learns to incorporate a discrete dependency graph structure between battery parameters.
The proposed method outperforms several popular methods by a significant margin on publicly available battery datasets and achieves SOTA performance.
arXiv Detail & Related papers (2024-08-14T15:44:56Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - SAM-RL: Sensing-Aware Model-Based Reinforcement Learning via
Differentiable Physics-Based Simulation and Rendering [49.78647219715034]
We propose a sensing-aware model-based reinforcement learning system called SAM-RL.
With the sensing-aware learning pipeline, SAM-RL allows a robot to select an informative viewpoint to monitor the task process.
We apply our framework to real world experiments for accomplishing three manipulation tasks: robotic assembly, tool manipulation, and deformable object manipulation.
arXiv Detail & Related papers (2022-10-27T05:30:43Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction [2.670887944566458]
We introduce a novel Transformer-based deep learning architecture which is able to simultaneously infer the ageing state from a limited number of voltage/current samples.
Our experiments show that the trained model is effective for input current profiles of different complexities and is robust to a wide range of degradation levels.
arXiv Detail & Related papers (2022-06-01T15:31:06Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Automated Few-Shot Time Series Forecasting based on Bi-level Programming [5.760976250387322]
This paper develops a BiLO-Auto-TSF/ML framework that automates the optimal design of a few-shot learning pipeline from a bi-level programming perspective.
Comprehensive experiments fully demonstrate the effectiveness of our proposed BiLO-Auto-TSF/ML framework.
arXiv Detail & Related papers (2022-03-07T12:15:14Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
We make use of a deep learning tool, knowledge-based neural ordinary differential equations (KNODE), to augment a model obtained from first principles.
The resulting hybrid model encompasses both a nominal first-principle model and a neural network learnt from simulated or real-world experimental data.
To improve closed-loop performance, the hybrid model is integrated into a novel MPC framework, known as KNODE-MPC.
arXiv Detail & Related papers (2021-09-10T12:09:18Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
The remaining Useful Life (RUL) of equipment is defined as the duration between the current time and its failure.
We propose an end-to-end deep learning model based on multi-layer perceptron and long short-term memory layers (LSTM) to predict the RUL.
We will discuss how the proposed end-to-end model is able to achieve such good results and compare it to other deep learning and state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T16:45:18Z) - Semi-supervised on-device neural network adaptation for remote and
portable laser-induced breakdown spectroscopy [0.22843885788439797]
We introduce a lightweight multi-layer perceptron (MLP) model for LIBS that can be adapted on-device without requiring labels for new input data.
It shows 89.3% average accuracy during data streaming, and up to 2.1% better accuracy compared to an model that does not support adaptation.
arXiv Detail & Related papers (2021-04-08T00:20:36Z) - A Dynamic Battery State-of-Health Forecasting Model for Electric Trucks:
Li-Ion Batteries Case-Study [1.1470070927586016]
This paper concerns the machine-learning-enabled state-of-health (SoH) prognosis for Li-ion batteries in electric trucks.
We propose autoregressive integrated modeling average (ARIMA) and supervised learning (bagging with decision tree as the base estimator) for forecasting the battery SoH.
arXiv Detail & Related papers (2021-03-30T12:19:21Z) - Battery Model Calibration with Deep Reinforcement Learning [5.004835203025507]
We implement a Reinforcement Learning-based framework for reliably and efficiently inferring calibration parameters of battery models.
The framework enables real-time inference of the computational model parameters in order to compensate the reality-gap from the observations.
arXiv Detail & Related papers (2020-12-07T19:26:08Z) - Iterative Semi-parametric Dynamics Model Learning For Autonomous Racing [2.40966076588569]
We develop and apply an iterative learning semi-parametric model, with a neural network, to the task of autonomous racing.
We show that our model can learn more accurately than a purely parametric model and generalize better than a purely non-parametric model.
arXiv Detail & Related papers (2020-11-17T16:24:10Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z) - Fast, Accurate, and Simple Models for Tabular Data via Augmented
Distillation [97.42894942391575]
We propose FAST-DAD to distill arbitrarily complex ensemble predictors into individual models like boosted trees, random forests, and deep networks.
Our individual distilled models are over 10x faster and more accurate than ensemble predictors produced by AutoML tools like H2O/AutoSklearn.
arXiv Detail & Related papers (2020-06-25T09:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.