Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial
Application Case on Autonomous Disassembly
- URL: http://arxiv.org/abs/2301.05033v1
- Date: Thu, 12 Jan 2023 14:00:37 GMT
- Title: Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial
Application Case on Autonomous Disassembly
- Authors: Chengzhi Wu, Xuelei Bi, Julius Pfrommer, Alexander Cebulla, Simon
Mangold and J\"urgen Beyerer
- Abstract summary: We present an industrial application case that uses sim2real transfer learning for point cloud data.
We provide insights on how to generate and process synthetic point cloud data.
A novel patch-based attention network is proposed additionally to tackle this problem.
- Score: 55.41644538483948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: On robotics computer vision tasks, generating and annotating large amounts of
data from real-world for the use of deep learning-based approaches is often
difficult or even impossible. A common strategy for solving this problem is to
apply simulation-to-reality (sim2real) approaches with the help of simulated
scenes. While the majority of current robotics vision sim2real work focuses on
image data, we present an industrial application case that uses sim2real
transfer learning for point cloud data. We provide insights on how to generate
and process synthetic point cloud data in order to achieve better performance
when the learned model is transferred to real-world data. The issue of
imbalanced learning is investigated using multiple strategies. A novel
patch-based attention network is proposed additionally to tackle this problem.
Related papers
- Close the Sim2real Gap via Physically-based Structured Light Synthetic Data Simulation [16.69742672616517]
We introduce an innovative structured light simulation system, generating both RGB and physically realistic depth images.
We create an RGBD dataset tailored for robotic industrial grasping scenarios.
By reducing the sim2real gap and enhancing deep learning training, we facilitate the application of deep learning models in industrial settings.
arXiv Detail & Related papers (2024-07-17T09:57:14Z) - Learning Sim-to-Real Dense Object Descriptors for Robotic Manipulation [4.7246285569677315]
We present Sim-to-Real Dense Object Nets (SRDONs), a dense object descriptor that not only understands the object via appropriate representation but also maps simulated and real data to a unified feature space with pixel consistency.
We demonstrate in experiments that pre-trained SRDONs significantly improve performances on unseen objects and unseen visual environments for various robotic tasks with zero real-world training.
arXiv Detail & Related papers (2023-04-18T02:28:55Z) - Hindsight States: Blending Sim and Real Task Elements for Efficient
Reinforcement Learning [61.3506230781327]
In robotics, one approach to generate training data builds on simulations based on dynamics models derived from first principles.
Here, we leverage the imbalance in complexity of the dynamics to learn more sample-efficiently.
We validate our method on several challenging simulated tasks and demonstrate that it improves learning both alone and when combined with an existing hindsight algorithm.
arXiv Detail & Related papers (2023-03-03T21:55:04Z) - Practical Imitation Learning in the Real World via Task Consistency Loss [18.827979446629296]
This paper introduces a self-supervised loss that encourages sim and real alignment both at the feature and action-prediction levels.
We achieve 80% success across ten seen and unseen scenes using only 16.2 hours of teleoperated demonstrations in sim and real.
arXiv Detail & Related papers (2022-02-03T21:43:06Z) - Robot Learning from Randomized Simulations: A Review [59.992761565399185]
Deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data.
State-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive.
We focus on a technique named 'domain randomization' which is a method for learning from randomized simulations.
arXiv Detail & Related papers (2021-11-01T13:55:41Z) - Low Dimensional State Representation Learning with Reward-shaped Priors [7.211095654886105]
We propose a method that aims at learning a mapping from the observations into a lower-dimensional state space.
This mapping is learned with unsupervised learning using loss functions shaped to incorporate prior knowledge of the environment and the task.
We test the method on several mobile robot navigation tasks in a simulation environment and also on a real robot.
arXiv Detail & Related papers (2020-07-29T13:00:39Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z) - RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real [74.45688231140689]
We introduce the RL-scene consistency loss for image translation, which ensures that the translation operation is invariant with respect to the Q-values associated with the image.
We obtain RL-CycleGAN, a new approach for simulation-to-real-world transfer for reinforcement learning.
arXiv Detail & Related papers (2020-06-16T08:58:07Z) - SimAug: Learning Robust Representations from Simulation for Trajectory
Prediction [78.91518036949918]
We propose a novel approach to learn robust representation through augmenting the simulation training data.
We show that SimAug achieves promising results on three real-world benchmarks using zero real training data.
arXiv Detail & Related papers (2020-04-04T21:22:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.