論文の概要: You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object
Tracking
- arxiv url: http://arxiv.org/abs/2304.08709v1
- Date: Tue, 18 Apr 2023 02:45:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 16:02:53.858049
- Title: You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object
Tracking
- Title(参考訳): マルチモーダルな3次元物体追跡を実現するには2つの検出器が必要だ
- Authors: Xiyang Wang, Jiawei He, Chunyun Fu, Ting Meng, Mingguang Huang
- Abstract要約: 本稿では,マルチモーダル融合に基づく新しいマルチオブジェクト追跡フレームワークを提案する。
このフレームワークは、古典的TBDパラダイムにおける複雑なデータアソシエーションプロセスを回避する。
提案手法は2つのモーダル検出器のみを用いてロバストな追跡を実現する。
- 参考スコア(独自算出の注目度): 8.34219107351442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Firstly, a new multi-object tracking framework is proposed in this paper
based on multi-modal fusion. By integrating object detection and multi-object
tracking into the same model, this framework avoids the complex data
association process in the classical TBD paradigm, and requires no additional
training. Secondly, confidence of historical trajectory regression is explored,
possible states of a trajectory in the current frame (weak object or strong
object) are analyzed and a confidence fusion module is designed to guide
non-maximum suppression of trajectory and detection for ordered association.
Finally, extensive experiments are conducted on the KITTI and Waymo datasets.
The results show that the proposed method can achieve robust tracking by using
only two modal detectors and it is more accurate than many of the latest TBD
paradigm-based multi-modal tracking methods. The source codes of the proposed
method are available at https://github.com/wangxiyang2022/YONTD-MOT
- Abstract(参考訳): まず,マルチモーダル融合(multi-modal fusion)に基づくマルチオブジェクト追跡フレームワークを提案する。
オブジェクト検出とマルチオブジェクト追跡を同一モデルに統合することにより、このフレームワークは従来のTBDパラダイムにおける複雑なデータ関連プロセスを避け、追加のトレーニングを必要としない。
次に、履歴軌道回帰の信頼性を探究し、現在のフレーム(弱物体または強物体)における軌道の可能性状態を分析し、信頼融合モジュールを、軌道の非最大抑制と順序関係の検出を導くように設計する。
最後に、KITTIとWaymoのデータセットについて広範な実験を行う。
提案手法は2つのモーダル検出器のみを用いてロバストなトラッキングが可能であり,最新のTBDパラダイムに基づくマルチモーダルトラッキング手法よりも精度が高いことを示す。
提案手法のソースコードはhttps://github.com/wangxiyang2022/yontd-motで入手できる。
関連論文リスト
- BiTrack: Bidirectional Offline 3D Multi-Object Tracking Using Camera-LiDAR Data [11.17376076195671]
BiTrackは2D-3D検出融合、初期軌道生成、双方向軌道再最適化のモジュールを含む3D OMOTフレームワークである。
KITTIデータセットを用いた実験結果から,BiTrackは3次元OMOTタスクの最先端性能を精度と効率で達成できることが示された。
論文 参考訳(メタデータ) (2024-06-26T15:09:54Z) - ADA-Track++: End-to-End Multi-Camera 3D Multi-Object Tracking with Alternating Detection and Association [15.161640917854363]
多視点カメラによる3D MOTのための新しいエンドツーエンドフレームワークであるADA-Track++を紹介する。
エッジ拡張型クロスアテンションに基づく学習可能なデータアソシエーションモジュールを提案する。
我々は、この関連モジュールをDTRベースの3D検出器のデコーダ層に統合する。
論文 参考訳(メタデータ) (2024-05-14T19:02:33Z) - TrajectoryFormer: 3D Object Tracking Transformer with Predictive
Trajectory Hypotheses [51.60422927416087]
3Dマルチオブジェクトトラッキング(MOT)は、自律走行車やサービスロボットを含む多くのアプリケーションにとって不可欠である。
本稿では,新しいポイントクラウドベースの3DMOTフレームワークであるTrjectoryFormerを紹介する。
論文 参考訳(メタデータ) (2023-06-09T13:31:50Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
本稿では,各トラックレットを連続ストリームとみなす新しいアプローチを提案する。
各タイムスタンプでは、現在のフレームだけがネットワークに送られ、メモリバンクに格納された複数フレームの履歴機能と相互作用する。
頑健な追跡のためのマルチフレーム機能の利用性を高めるために,コントラッシブシーケンス強化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-14T02:58:27Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
マルチオブジェクトトラッキング(MOT)は、時間とともにシーン内のオブジェクトの位置、外観、アイデンティティを同時に推論する必要がある課題である。
本研究の目的は、トラッキング・バイ・ディテクト・アプローチを超えて、未知のオブジェクト・クラスに対してもよく機能するクラスに依存しないトラッキングへと移行することである。
論文 参考訳(メタデータ) (2022-10-26T10:19:37Z) - Exploring Simple 3D Multi-Object Tracking for Autonomous Driving [10.921208239968827]
LiDARポイントクラウドにおける3Dマルチオブジェクトトラッキングは、自動運転車にとって重要な要素である。
既存の手法は、主にトラッキング・バイ・検出パイプラインに基づいており、検出アソシエーションのマッチングステップが必然的に必要である。
我々は,手作りの追跡パラダイムをシンプルにするために,原点雲からの共同検出と追跡のためのエンドツーエンドのトレーニング可能なモデルを提案する。
論文 参考訳(メタデータ) (2021-08-23T17:59:22Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
我々は,DEFT と呼ばれる効率的な関節検出・追跡モデルを提案する。
提案手法は,外見に基づくオブジェクトマッチングネットワークと,下層のオブジェクト検出ネットワークとの協調学習に依存している。
DEFTは2Dオンライントラッキングリーダーボードのトップメソッドに匹敵する精度とスピードを持っている。
論文 参考訳(メタデータ) (2021-02-03T20:00:44Z) - Probabilistic 3D Multi-Modal, Multi-Object Tracking for Autonomous
Driving [22.693895321632507]
異なる訓練可能なモジュールからなる確率的、マルチモーダル、マルチオブジェクトトラッキングシステムを提案する。
本手法はNuScenes Trackingデータセットの現在の状態を上回っていることを示した。
論文 参考訳(メタデータ) (2020-12-26T15:00:54Z) - Chained-Tracker: Chaining Paired Attentive Regression Results for
End-to-End Joint Multiple-Object Detection and Tracking [102.31092931373232]
そこで我々は,3つのサブタスク全てをエンド・ツー・エンドのソリューションに統合する簡単なオンラインモデルである Chained-Tracker (CTracker) を提案する。
鎖状構造と対の注意的回帰という2つの大きな特徴は、CTrackerをシンプルに、速く、効果的にする。
論文 参考訳(メタデータ) (2020-07-29T02:38:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。