論文の概要: You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object Tracking
- arxiv url: http://arxiv.org/abs/2304.08709v2
- Date: Fri, 22 Mar 2024 12:55:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 23:58:25.464522
- Title: You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object Tracking
- Title(参考訳): マルチモーダルな3次元物体追跡を実現するには2つの検出器が必要だ
- Authors: Xiyang Wang, Chunyun Fu, Jiawei He, Mingguang Huang, Ting Meng, Siyu Zhang, Hangning Zhou, Ziyao Xu, Chi Zhang,
- Abstract要約: 提案手法は,2次元検出器と3次元検出器のみを用いて,ロバストなトラッキングを実現する。
多くの最先端のTBDベースのマルチモーダルトラッキング手法よりも正確であることが証明されている。
- 参考スコア(独自算出の注目度): 9.20064374262956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the classical tracking-by-detection (TBD) paradigm, detection and tracking are separately and sequentially conducted, and data association must be properly performed to achieve satisfactory tracking performance. In this paper, a new end-to-end multi-object tracking framework is proposed, which integrates object detection and multi-object tracking into a single model. The proposed tracking framework eliminates the complex data association process in the classical TBD paradigm, and requires no additional training. Secondly, the regression confidence of historical trajectories is investigated, and the possible states of a trajectory (weak object or strong object) in the current frame are predicted. Then, a confidence fusion module is designed to guide non-maximum suppression for trajectories and detections to achieve ordered and robust tracking. Thirdly, by integrating historical trajectory features, the regression performance of the detector is enhanced, which better reflects the occlusion and disappearance patterns of objects in real world. Lastly, extensive experiments are conducted on the commonly used KITTI and Waymo datasets. The results show that the proposed framework can achieve robust tracking by using only a 2D detector and a 3D detector, and it is proven more accurate than many of the state-of-the-art TBD-based multi-modal tracking methods. The source codes of the proposed method are available at https://github.com/wangxiyang2022/YONTD-MOT.
- Abstract(参考訳): 古典的トラッキング・バイ・検出(TBD)パラダイムでは、検出と追跡を別々に順次行い、データアソシエーションを適切に行い、良好な追跡性能を達成する必要がある。
本稿では,オブジェクト検出とマルチオブジェクト追跡を1つのモデルに統合した,新しいエンドツーエンドマルチオブジェクト追跡フレームワークを提案する。
提案するトラッキングフレームワークは,従来のTBDパラダイムの複雑なデータアソシエーションプロセスを排除し,追加のトレーニングを必要としない。
次に、過去の軌跡の回帰信頼度を調査し、現在のフレームにおける軌跡(弱い物体または強い物体)の可能な状態を予測する。
次に、信頼融合モジュールは、トラジェクトリと検出の非最大抑制を誘導し、秩序的でロバストな追跡を実現するように設計されている。
第三に、歴史的軌道特徴を統合することにより、検出器の回帰性能が向上し、現実世界の物体の閉塞や消失パターンをよりよく反映する。
最後に、一般的に使われているKITTIとWaymoのデータセットについて広範な実験を行う。
提案手法は,2次元検出器と3次元検出器のみを用いることでロバストなトラッキングが可能であり,最先端のTBDベースのマルチモーダルトラッキング手法よりも精度が高いことを示す。
提案手法のソースコードはhttps://github.com/wangxiyang2022/YONTD-MOTで公開されている。
関連論文リスト
- BiTrack: Bidirectional Offline 3D Multi-Object Tracking Using Camera-LiDAR Data [11.17376076195671]
BiTrackは2D-3D検出融合、初期軌道生成、双方向軌道再最適化のモジュールを含む3D OMOTフレームワークである。
KITTIデータセットを用いた実験結果から,BiTrackは3次元OMOTタスクの最先端性能を精度と効率で達成できることが示された。
論文 参考訳(メタデータ) (2024-06-26T15:09:54Z) - ADA-Track: End-to-End Multi-Camera 3D Multi-Object Tracking with Alternating Detection and Association [15.161640917854363]
多視点カメラによる3D MOTのための新しいエンドツーエンドフレームワークであるADA-Trackを紹介する。
エッジ拡張型クロスアテンションに基づく学習可能なデータアソシエーションモジュールを提案する。
我々は、この関連モジュールをDTRベースの3D検出器のデコーダ層に統合する。
論文 参考訳(メタデータ) (2024-05-14T19:02:33Z) - TrajectoryFormer: 3D Object Tracking Transformer with Predictive
Trajectory Hypotheses [51.60422927416087]
3Dマルチオブジェクトトラッキング(MOT)は、自律走行車やサービスロボットを含む多くのアプリケーションにとって不可欠である。
本稿では,新しいポイントクラウドベースの3DMOTフレームワークであるTrjectoryFormerを紹介する。
論文 参考訳(メタデータ) (2023-06-09T13:31:50Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
本稿では,各トラックレットを連続ストリームとみなす新しいアプローチを提案する。
各タイムスタンプでは、現在のフレームだけがネットワークに送られ、メモリバンクに格納された複数フレームの履歴機能と相互作用する。
頑健な追跡のためのマルチフレーム機能の利用性を高めるために,コントラッシブシーケンス強化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-14T02:58:27Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
マルチオブジェクトトラッキング(MOT)は、時間とともにシーン内のオブジェクトの位置、外観、アイデンティティを同時に推論する必要がある課題である。
本研究の目的は、トラッキング・バイ・ディテクト・アプローチを超えて、未知のオブジェクト・クラスに対してもよく機能するクラスに依存しないトラッキングへと移行することである。
論文 参考訳(メタデータ) (2022-10-26T10:19:37Z) - Exploring Simple 3D Multi-Object Tracking for Autonomous Driving [10.921208239968827]
LiDARポイントクラウドにおける3Dマルチオブジェクトトラッキングは、自動運転車にとって重要な要素である。
既存の手法は、主にトラッキング・バイ・検出パイプラインに基づいており、検出アソシエーションのマッチングステップが必然的に必要である。
我々は,手作りの追跡パラダイムをシンプルにするために,原点雲からの共同検出と追跡のためのエンドツーエンドのトレーニング可能なモデルを提案する。
論文 参考訳(メタデータ) (2021-08-23T17:59:22Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
我々は,DEFT と呼ばれる効率的な関節検出・追跡モデルを提案する。
提案手法は,外見に基づくオブジェクトマッチングネットワークと,下層のオブジェクト検出ネットワークとの協調学習に依存している。
DEFTは2Dオンライントラッキングリーダーボードのトップメソッドに匹敵する精度とスピードを持っている。
論文 参考訳(メタデータ) (2021-02-03T20:00:44Z) - Probabilistic 3D Multi-Modal, Multi-Object Tracking for Autonomous
Driving [22.693895321632507]
異なる訓練可能なモジュールからなる確率的、マルチモーダル、マルチオブジェクトトラッキングシステムを提案する。
本手法はNuScenes Trackingデータセットの現在の状態を上回っていることを示した。
論文 参考訳(メタデータ) (2020-12-26T15:00:54Z) - Chained-Tracker: Chaining Paired Attentive Regression Results for
End-to-End Joint Multiple-Object Detection and Tracking [102.31092931373232]
そこで我々は,3つのサブタスク全てをエンド・ツー・エンドのソリューションに統合する簡単なオンラインモデルである Chained-Tracker (CTracker) を提案する。
鎖状構造と対の注意的回帰という2つの大きな特徴は、CTrackerをシンプルに、速く、効果的にする。
論文 参考訳(メタデータ) (2020-07-29T02:38:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。