Risk Classification of Brain Metastases via Radiomics, Delta-Radiomics
and Machine Learning
- URL: http://arxiv.org/abs/2302.08802v1
- Date: Fri, 17 Feb 2023 10:55:18 GMT
- Title: Risk Classification of Brain Metastases via Radiomics, Delta-Radiomics
and Machine Learning
- Authors: Philipp Sommer, Yixing Huang, Christoph Bert, Andreas Maier, Manuel
Schmidt, Arnd D\"orfler, Rainer Fietkau and Florian Putz
- Abstract summary: We hypothesized that using radiomics and machine learning (ML), metastases at high risk for subsequent progression could be identified during follow-up prior to the onset of significant tumor growth.
The classification is realized via the maximum-relevance minimal-redundancy (MRMR) technique and support vector machines (SVM)
The results indicate that risk stratification of BM based on radiomics and machine learning during post-SRT follow-up is possible with good accuracy and should be further pursued to personalize and improve post-SRT follow-up.
- Score: 7.165205048529115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stereotactic radiotherapy (SRT) is one of the most important treatment for
patients with brain metastases (BM). Conventionally, following SRT patients are
monitored by serial imaging and receive salvage treatments in case of
significant tumor growth. We hypothesized that using radiomics and machine
learning (ML), metastases at high risk for subsequent progression could be
identified during follow-up prior to the onset of significant tumor growth,
enabling personalized follow-up intervals and early selection for salvage
treatment. All experiments are performed on a dataset from clinical routine of
the Radiation Oncology department of the University Hospital Erlangen (UKER).
The classification is realized via the maximum-relevance minimal-redundancy
(MRMR) technique and support vector machines (SVM). The pipeline leads to a
classification with a mean area under the curve (AUC) score of 0.83 in internal
cross-validation and allows a division of the cohort into two subcohorts that
differ significantly in their median time to progression (low-risk metastasis
(LRM): 17.3 months, high-risk metastasis (HRM): 9.6 months, p < 0.01). The
classification performance is especially enhanced by the analysis of medical
images from different points in time (AUC 0.53 -> AUC 0.74). The results
indicate that risk stratification of BM based on radiomics and machine learning
during post-SRT follow-up is possible with good accuracy and should be further
pursued to personalize and improve post-SRT follow-up.
Related papers
- Analysis of clinical, dosimetric and radiomic features for predicting local failure after stereotactic radiotherapy of brain metastases in malignant melanoma [1.813829334805839]
The aim of this study was to investigate the role of clinical, dosimetric and pretherapeutic magnetic resonance imaging (MRI) features for lesion-specific outcome prediction.
arXiv Detail & Related papers (2024-05-31T14:18:37Z) - Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation [47.119513326344126]
The BraTS-MEN-RT challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of radiotherapy planning brain MRIs.
Each case includes a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space.
Target volume annotations adhere to established radiotherapy planning protocols.
arXiv Detail & Related papers (2024-05-28T17:25:43Z) - Deep-learning-based acceleration of MRI for radiotherapy planning of
pediatric patients with brain tumors [39.58317527488534]
We developed a deep learning-based method for MRI reconstruction from undersampled data acquired with RT-specific receiver coil arrangements.
DeepMRIRec reduced scanning time by a factor of four producing a structural similarity score surpassing the evaluated state-of-the-art method.
arXiv Detail & Related papers (2023-11-22T16:01:44Z) - Radiomics Boosts Deep Learning Model for IPMN Classification [3.4659499358648675]
Intraductal Papillary Mucinous Neoplasm (IPMN) cysts are pre-malignant pancreas lesions, and they can progress into pancreatic cancer.
In this study, we propose a novel computer-aided diagnosis pipeline for IPMN risk classification from MRI scans.
arXiv Detail & Related papers (2023-09-11T22:41:52Z) - Brain Tumor Recurrence vs. Radiation Necrosis Classification and Patient
Survivability Prediction [0.0]
GBM is the most aggressive brain tumor in adults that has a short survival rate even after aggressive treatment with surgery and radiation therapy.
The changes on magnetic resonance imaging (MRI) for patients with GBM after radiotherapy are indicative of radiation-induced necrosis (RN) or recurrent brain tumor (rBT)
This study proposes computational modeling with statistically rigorous repeated random sub-sampling to balance the subset sample size for rBT and RN classification.
arXiv Detail & Related papers (2023-06-05T21:39:11Z) - Segmentation of glioblastomas in early post-operative multi-modal MRI
with deep neural networks [33.51490233427579]
Two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task.
The best performance achieved was a 61% Dice score, and the best classification performance was about 80% balanced accuracy.
The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.
arXiv Detail & Related papers (2023-04-18T10:14:45Z) - Segmentation of Planning Target Volume in CT Series for Total Marrow
Irradiation Using U-Net [0.0]
We present a deep learning-based auto-contouring method for segmenting Planning Target Volume (PTV) for TMLI treatment using the U-Net architecture.
Our findings are a preliminary but significant step towards developing a segmentation model that has the potential to save radiation oncologists a considerable amount of time.
arXiv Detail & Related papers (2023-04-05T10:40:37Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
Radiomic models have been shown to outperform clinical data for outcome prediction in glioblastoma (GBM)
We aimed to compare nine machine learning classifiers to predict overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM patients.
xGB obtained maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation (71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,
arXiv Detail & Related papers (2021-02-10T15:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.