Polytopes of Absolutely Wigner Bounded Spin States
- URL: http://arxiv.org/abs/2304.09006v3
- Date: Tue, 03 Dec 2024 08:39:44 GMT
- Title: Polytopes of Absolutely Wigner Bounded Spin States
- Authors: Jérôme Denis, Jack Davis, Robert B. Mann, John Martin,
- Abstract summary: Two important distributions with non-positive quasiprobability are the Wigner function and the Glauber-Sudarshan function.<n>We study properties of the spin Wigner function for finite-dimensional quantum systems.
- Score: 0.562479170374811
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quasiprobability has become an increasingly popular notion for characterising non-classicality in quantum information, thermodynamics, and metrology. Two important distributions with non-positive quasiprobability are the Wigner function and the Glauber-Sudarshan function. Here we study properties of the spin Wigner function for finite-dimensional quantum systems and draw comparisons with its infinite-dimensional analog, focusing in particular on the relation to the Glauber-Sudarshan function and the existence of absolutely Wigner-bounded states. More precisely, we investigate unitary orbits of mixed spin states that are characterized by Wigner functions lower-bounded by a specified value. To this end, we extend a characterization of the set of absolutely Wigner positive states as a set of linear eigenvalue constraints, which together define a polytope centred on the maximally mixed state in the simplex of spin-$j$ states. The lower bound determines the relative size of such absolutely Wigner bounded (AWB) polytopes and we study their geometric characteristics. In each dimension a Hilbert-Schmidt ball representing a tight purity-based sufficient condition to be AWB is exactly determined, while another ball representing a necessary condition to be AWB is conjectured. Special attention is given to the case where the polytope separates orbits containing only positive Wigner functions from other orbits because of the use of Wigner negativity as a witness of non-classicality. Comparisons are made to absolute symmetric state separability and spin Glauber-Sudarshan positivity, with additional details given for low spin quantum numbers.
Related papers
- Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.
We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.
We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - Wigner entropy conjecture and the interference formula in quantum phase space [0.0]
Wigner-positive quantum states have the peculiarity to admit a Wigner function that is a genuine probability distribution over phase space.
We prove that this Wigner entropy conjecture holds true for a broad class of Wigner-positive states known as beam-splitter states.
arXiv Detail & Related papers (2024-11-08T13:37:05Z) - Scattering Neutrinos, Spin Models, and Permutations [42.642008092347986]
We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
arXiv Detail & Related papers (2024-06-26T18:27:15Z) - Nodal Spectral Functions Stabilized by Non-Hermitian Topology of Quasiparticles [0.0]
We discuss how the abundance and stability of nodal phases is drastically affected by NH topology.
We study a microscopic lattice model in which a sublattice-dependent interaction stabilizes nodal spectral functions.
arXiv Detail & Related papers (2024-05-08T18:00:06Z) - Entanglement and volume monogamy features of permutation symmetric
N-qubit pure states with N-distinct spinors: GHZ and WWbar states [0.0]
We explore the entanglement features of pure symmetric N-qubit states characterized by N-distinct spinors.
Along with a comparison of pairwise entanglement and monogamy properties, we explore the geometric information contained in them by constructing their canonical steering ellipsoids.
We obtain the volume monogamy relations satisfied by WWbar states as a function of number of qubits and compare with the maximal monogamy property of GHZ states.
arXiv Detail & Related papers (2023-12-11T13:25:50Z) - The Tempered Hilbert Simplex Distance and Its Application To Non-linear
Embeddings of TEMs [36.135201624191026]
We introduce three different parameterizations of finite discrete TEMs via Legendre functions of the negative tempered entropy function.
Similar to the Hilbert geometry, the tempered Hilbert distance is characterized as a $t$-symmetrization of the oriented tempered Funk distance.
arXiv Detail & Related papers (2023-11-22T15:24:29Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Stellar representation of extremal Wigner-negative spin states [1.1470070927586016]
We show that spin states with a maximally negative Wigner quasiprobability distribution exhibit a partial but not high degree of symmetry within their star configurations.
We also prove that all spin coherent states of arbitrary dimension have non-zero Wigner negativity.
arXiv Detail & Related papers (2022-06-01T02:44:57Z) - Symplectic tomographic probability distribution of crystallized
Schr\"odinger cat states [1.2891210250935143]
We study a superposition of generic Gaussian states associated to symmetries of a regular polygon of n sides.
We obtain the Wigner functions and tomographic probability distributions determining the density matrices of the states.
arXiv Detail & Related papers (2022-03-15T11:03:47Z) - Maximum entanglement of mixed symmetric states under unitary
transformations [0.0]
We study the maximum entanglement that can be produced by a global unitary transformation for systems of two and three qubits constrained to the fully symmetric states.
We also study the symmetric states that remain separable after any global unitary transformation.
arXiv Detail & Related papers (2021-12-09T18:41:26Z) - Continuous majorization in quantum phase space [0.0]
We show that majorization theory provides an elegant and very natural approach to exploring the information-theoretic properties of Wigner functions in phase space.
We conjecture a fundamental majorization relation: any positive Wigner function is majorized by the Wigner function of a Gaussian pure state.
Our main result is then to prove this fundamental majorization relation for a relevant subset of Wigner-positive quantum states.
arXiv Detail & Related papers (2021-08-20T13:26:04Z) - Quantum Wigner entropy [0.0]
We define the Wigner entropy of a quantum state as the differential Shannon entropy of the Wigner function of the state.
We conjecture that it is lower bounded by $lnpi +1$ within the convex set of Wigner-positive states.
The Wigner entropy is anticipated to be a significant physical quantity, for example, in quantum optics.
arXiv Detail & Related papers (2021-05-26T21:12:50Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - On quantum states with a finite-dimensional approximation property [0.0]
We consider a class of quantum states containing finite rank states containing infinite rank states with the sufficient rate decreasing of eigenvalues.
We show that this property implies finiteness of the entropy von Neumann entropy but unsolved the question concerning the converse implication.
We establish the uniform continuity of the above characteristics as functions of a channel w.r.t.
arXiv Detail & Related papers (2021-03-17T13:15:04Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z) - The Convergence Indicator: Improved and completely characterized
parameter bounds for actual convergence of Particle Swarm Optimization [68.8204255655161]
We introduce a new convergence indicator that can be used to calculate whether the particles will finally converge to a single point or diverge.
Using this convergence indicator we provide the actual bounds completely characterizing parameter regions that lead to a converging swarm.
arXiv Detail & Related papers (2020-06-06T19:08:05Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
We study the inequality and non-asymptotic properties of approximation procedures with Polyak-Ruppert averaging.
We prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity.
arXiv Detail & Related papers (2020-04-09T17:54:18Z) - SU$(3)_1$ Chiral Spin Liquid on the Square Lattice: a View from
Symmetric PEPS [55.41644538483948]
Quantum spin liquids can be faithfully represented and efficiently characterized within the framework of Projectedangled Pair States (PEPS)
Characteristic features are revealed by the entanglement spectrum (ES) on an infinitely long cylinder.
Special features in the ES are shown to be in correspondence with bulk anyonic correlations, indicating a fine structure in the holographic bulk-edge correspondence.
arXiv Detail & Related papers (2019-12-31T16:30:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.