Causal Flow-based Variational Auto-Encoder for Disentangled Causal Representation Learning
- URL: http://arxiv.org/abs/2304.09010v4
- Date: Wed, 8 May 2024 14:12:47 GMT
- Title: Causal Flow-based Variational Auto-Encoder for Disentangled Causal Representation Learning
- Authors: Di Fan, Yannian Kou, Chuanhou Gao,
- Abstract summary: Disentangled representation learning aims to learn low-dimensional representations of data, where each dimension corresponds to an underlying generative factor.
We design a new VAE-based framework named Disentangled Causal Variational Auto-Encoder (DCVAE)
DCVAE includes a variant of autoregressive flows known as causal flows, capable of learning effective causal disentangled representations.
- Score: 1.4875602190483512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Disentangled representation learning aims to learn low-dimensional representations of data, where each dimension corresponds to an underlying generative factor. Currently, Variational Auto-Encoder (VAE) are widely used for disentangled representation learning, with the majority of methods assuming independence among generative factors. However, in real-world scenarios, generative factors typically exhibit complex causal relationships. We thus design a new VAE-based framework named Disentangled Causal Variational Auto-Encoder (DCVAE), which includes a variant of autoregressive flows known as causal flows, capable of learning effective causal disentangled representations. We provide a theoretical analysis of the disentanglement identifiability of DCVAE, ensuring that our model can effectively learn causal disentangled representations. The performance of DCVAE is evaluated on both synthetic and real-world datasets, demonstrating its outstanding capability in achieving causal disentanglement and performing intervention experiments. Moreover, DCVAE exhibits remarkable performance on downstream tasks and has the potential to learn the true causal structure among factors.
Related papers
- Disentanglement with Factor Quantized Variational Autoencoders [11.086500036180222]
We propose a discrete variational autoencoder (VAE) based model where the ground truth information about the generative factors are not provided to the model.
We demonstrate the advantages of learning discrete representations over learning continuous representations in facilitating disentanglement.
Our method called FactorQVAE combines optimization based disentanglement approaches with discrete representation learning.
arXiv Detail & Related papers (2024-09-23T09:33:53Z) - Flow Factorized Representation Learning [109.51947536586677]
We introduce a generative model which specifies a distinct set of latent probability paths that define different input transformations.
We show that our model achieves higher likelihoods on standard representation learning benchmarks while simultaneously being closer to approximately equivariant models.
arXiv Detail & Related papers (2023-09-22T20:15:37Z) - Causal Disentangled Variational Auto-Encoder for Preference
Understanding in Recommendation [50.93536377097659]
This paper introduces the Causal Disentangled Variational Auto-Encoder (CaD-VAE), a novel approach for learning causal disentangled representations from interaction data in recommender systems.
The approach utilizes structural causal models to generate causal representations that describe the causal relationship between latent factors.
arXiv Detail & Related papers (2023-04-17T00:10:56Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
Correlation Information Bottleneck (CIB) seeks a tradeoff between compression and redundancy in representations.
We derive a tight theoretical upper bound for the mutual information between multimodal inputs and representations.
arXiv Detail & Related papers (2022-09-14T22:04:10Z) - The Transitive Information Theory and its Application to Deep Generative
Models [0.0]
Variational Autoencoder (VAE) could be pushed in two opposite directions.
Existing methods narrow the issues to the rate-distortion trade-off between compression and reconstruction.
We develop a system that learns a hierarchy of disentangled representation together with a mechanism for recombining the learned representation for generalization.
arXiv Detail & Related papers (2022-03-09T22:35:02Z) - Generalizable Information Theoretic Causal Representation [37.54158138447033]
We propose to learn causal representation from observational data by regularizing the learning procedure with mutual information measures according to our hypothetical causal graph.
The optimization involves a counterfactual loss, based on which we deduce a theoretical guarantee that the causality-inspired learning is with reduced sample complexity and better generalization ability.
arXiv Detail & Related papers (2022-02-17T00:38:35Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
We propose learning to dynamically select discretization tightness conditioned on inputs.
We show that dynamically varying tightness in communication bottlenecks can improve model performance on visual reasoning and reinforcement learning tasks.
arXiv Detail & Related papers (2022-02-02T23:54:26Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Contrastively Disentangled Sequential Variational Autoencoder [20.75922928324671]
We propose a novel sequence representation learning method, named Contrastively Disentangled Sequential Variational Autoencoder (C-DSVAE)
We use a novel evidence lower bound which maximizes the mutual information between the input and the latent factors, while penalizes the mutual information between the static and dynamic factors.
Our experiments show that C-DSVAE significantly outperforms the previous state-of-the-art methods on multiple metrics.
arXiv Detail & Related papers (2021-10-22T23:00:32Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z) - NestedVAE: Isolating Common Factors via Weak Supervision [45.366986365879505]
We identify the connection between the task of bias reduction and that of isolating factors common between domains.
To isolate the common factors we combine the theory of deep latent variable models with information bottleneck theory.
Two outer VAEs with shared weights attempt to reconstruct the input and infer a latent space, whilst a nested VAE attempts to reconstruct the latent representation of one image, from the latent representation of its paired image.
arXiv Detail & Related papers (2020-02-26T15:49:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.