DRIFT: A Federated Recommender System with Implicit Feedback on the
Items
- URL: http://arxiv.org/abs/2304.09084v1
- Date: Mon, 17 Apr 2023 13:12:33 GMT
- Title: DRIFT: A Federated Recommender System with Implicit Feedback on the
Items
- Authors: Theo Nommay
- Abstract summary: DRIFT is a federated architecture for recommender systems, using implicit feedback.
Our learning model is based on a recent algorithm for recommendation with implicit feedbacks SAROS.
Our algorithm is secure, and participants in our federated system cannot guess the interactions made by the user.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays there are more and more items available online, this makes it hard
for users to find items that they like. Recommender systems aim to find the
item who best suits the user, using his historical interactions. Depending on
the context, these interactions may be more or less sensitive and collecting
them brings an important problem concerning the users' privacy. Federated
systems have shown that it is possible to make accurate and efficient
recommendations without storing users' personal information. However, these
systems use instantaneous feedback from the user. In this report, we propose
DRIFT, a federated architecture for recommender systems, using implicit
feedback. Our learning model is based on a recent algorithm for recommendation
with implicit feedbacks SAROS. We aim to make recommendations as precise as
SAROS, without compromising the users' privacy. In this report we show that
thanks to our experiments, but also thanks to a theoretical analysis on the
convergence. We have shown also that the computation time has a linear
complexity with respect to the number of interactions made. Finally, we have
shown that our algorithm is secure, and participants in our federated system
cannot guess the interactions made by the user, except DOs that have the item
involved in the interaction.
Related papers
- Dissertation: On the Theoretical Foundation of Model Comparison and Evaluation for Recommender System [4.76281731053599]
Recommender systems utilize users' historical data to infer customer interests and provide personalized recommendations.
Collaborative filtering is one family of recommendation algorithms that uses ratings from multiple users to predict missing ratings.
Recommender systems can be more complex and incorporate auxiliary data such as content-based attributes, user interactions, and contextual information.
arXiv Detail & Related papers (2024-11-04T06:31:52Z) - System-2 Recommenders: Disentangling Utility and Engagement in Recommendation Systems via Temporal Point-Processes [80.97898201876592]
We propose a generative model in which past content interactions impact the arrival rates of users based on a self-exciting Hawkes process.
We show analytically that given samples it is possible to disentangle System-1 and System-2 and allow content optimization based on user utility.
arXiv Detail & Related papers (2024-05-29T18:19:37Z) - Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback.
The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied.
We focus on how the evaluation of task-oriented dialogue systems ( TDSs) is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated.
arXiv Detail & Related papers (2024-04-19T16:45:50Z) - FedGRec: Federated Graph Recommender System with Lazy Update of Latent
Embeddings [108.77460689459247]
We propose a Federated Graph Recommender System (FedGRec) to mitigate privacy concerns.
In our system, users and the server explicitly store latent embeddings for users and items, where the latent embeddings summarize different orders of indirect user-item interactions.
We perform extensive empirical evaluations to verify the efficacy of using latent embeddings as a proxy of missing interaction graph.
arXiv Detail & Related papers (2022-10-25T01:08:20Z) - Comparison-based Conversational Recommender System with Relative Bandit
Feedback [15.680698037463488]
We propose a novel comparison-based conversational recommender system.
We propose a new bandit algorithm, which we call RelativeConUCB.
The experiments on both synthetic and real-world datasets validate the advantage of our proposed method.
arXiv Detail & Related papers (2022-08-21T08:05:46Z) - Causal Disentanglement with Network Information for Debiased
Recommendations [34.698181166037564]
Recent research proposes to debias by modeling a recommender system from a causal perspective.
The critical challenge in this setting is accounting for the hidden confounders.
We propose to leverage network information (i.e., user-social and user-item networks) to better approximate hidden confounders.
arXiv Detail & Related papers (2022-04-14T20:55:11Z) - Explainability in Music Recommender Systems [69.0506502017444]
We discuss how explainability can be addressed in the context of Music Recommender Systems (MRSs)
MRSs are often quite complex and optimized for recommendation accuracy.
We show how explainability components can be integrated within a MRS and in what form explanations can be provided.
arXiv Detail & Related papers (2022-01-25T18:32:11Z) - An Empirical analysis on Transparent Algorithmic Exploration in
Recommender Systems [17.91522677924348]
We propose a new approach for feedback elicitation without any deception and compare our approach to the conventional mix-in approach for evaluation.
Our results indicated that users left significantly more feedback on items chosen for exploration with our interface.
arXiv Detail & Related papers (2021-07-31T05:08:29Z) - Seamlessly Unifying Attributes and Items: Conversational Recommendation
for Cold-Start Users [111.28351584726092]
We consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively.
Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play.
arXiv Detail & Related papers (2020-05-23T08:56:37Z) - Controllable Multi-Interest Framework for Recommendation [64.30030600415654]
We formalize the recommender system as a sequential recommendation problem.
We propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec.
Our framework has been successfully deployed on the offline Alibaba distributed cloud platform.
arXiv Detail & Related papers (2020-05-19T10:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.