論文の概要: Exploring 360-Degree View of Customers for Lookalike Modeling
- arxiv url: http://arxiv.org/abs/2304.09105v1
- Date: Mon, 17 Apr 2023 14:01:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 13:53:04.346387
- Title: Exploring 360-Degree View of Customers for Lookalike Modeling
- Title(参考訳): ルックアライクなモデリングのための顧客の360度ビューの検討
- Authors: Md Mostafizur Rahman, Daisuke Kikuta, Satyen Abrol, Yu Hirate,
Toyotaro Suzumura, Pablo Loyola, Takuma Ebisu, Manoj Kondapaka
- Abstract要約: そこで我々は,楽天グループの顧客ターゲットを改善するために,顧客行動や,異なるプラットフォーム上での購入行動,顧客の忠誠行動,ルックアライクなモデルを構築する,新たな枠組みを提案する。
- 参考スコア(独自算出の注目度): 3.264007084815591
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lookalike models are based on the assumption that user similarity plays an
important role towards product selling and enhancing the existing advertising
campaigns from a very large user base. Challenges associated to these models
reside on the heterogeneity of the user base and its sparsity. In this work, we
propose a novel framework that unifies the customers different behaviors or
features such as demographics, buying behaviors on different platforms,
customer loyalty behaviors and build a lookalike model to improve customer
targeting for Rakuten Group, Inc. Extensive experiments on real e-commerce and
travel datasets demonstrate the effectiveness of our proposed lookalike model
for user targeting task.
- Abstract(参考訳): Lookaのようなモデルは、非常に大きなユーザーベースから既存の広告キャンペーンを売り、強化するために、ユーザー類似性が重要な役割を果たすという仮定に基づいている。
これらのモデルに関連する課題は、ユーザベースの不均一性とその疎性にある。
本研究は,楽天グループの顧客ターゲットを改善するために,利用者の行動や,人口動態,異なるプラットフォーム上での購買行動,顧客の忠誠行動,ルックアライスなモデルを構築するための新しい枠組みを提案する。
実際のeコマースおよび旅行データセットに関する大規模な実験は、ユーザターゲティングタスクにおいて提案したルックアライズモデルの有効性を示す。
関連論文リスト
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - Preserving Individuality while Following the Crowd: Understanding the Role of User Taste and Crowd Wisdom in Online Product Rating Prediction [31.42047941275096]
ユーザレベルでも製品レベルでも,歴史的評価を重視したユニークな,実践的なアプローチを提案する。
このアプローチを高度にスケーラブルで容易にデプロイ可能な,効率的なデータ処理戦略を開発しました。
論文 参考訳(メタデータ) (2024-09-06T23:16:06Z) - Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond [87.1712108247199]
我々の目標は、マルチモーダルパーソナライゼーションシステム(UniMP)のための統一パラダイムを確立することである。
我々は、幅広いパーソナライズされたニーズに対処できる汎用的でパーソナライズされた生成フレームワークを開発する。
我々の手法は、パーソナライズされたタスクのための基礎言語モデルの能力を高める。
論文 参考訳(メタデータ) (2024-03-15T20:21:31Z) - UNICON: A unified framework for behavior-based consumer segmentation in
e-commerce [0.9213852038999552]
グループベースのパーソナライゼーションは、消費者セグメントのより広い共通の嗜好に基づくパーソナライゼーションの適度なレベルを提供する。
我々は,統合型ディープラーニングコンシューマセグメンテーションフレームワークであるUNICONを紹介する。
フレームワークの有効性を広く実験し、ルックアライズされたデザイナのオーディエンスとデータ駆動型スタイルセグメントを識別する。
論文 参考訳(メタデータ) (2023-09-18T14:58:13Z) - Intent Detection at Scale: Tuning a Generic Model using Relevant Intents [0.5461938536945723]
本研究は,単一のジェネリックモデルとクライアント毎のインテントリストを組み合わせることで,インテント予測を多種多様なクライアントに効果的に拡張するシステムを提案する。
当社のアプローチは、クライアントに対してパーソナライズされたエクスペリエンスを提供しながら、トレーニングとメンテナンスのコストを最小限に抑え、関連する意図の変化にシームレスに対応できるようにします。
最終的なシステムは、業界固有のモデルと比較して非常に優れたパフォーマンスを示し、柔軟性と多様なクライアントニーズに対応する能力を示している。
論文 参考訳(メタデータ) (2023-09-15T13:15:20Z) - PinnerFormer: Sequence Modeling for User Representation at Pinterest [60.335384724891746]
我々は、ユーザの将来的なエンゲージメントを予測するためにトレーニングされたユーザ表現であるPinnerFormerを紹介する。
従来のアプローチとは異なり、新しい密集した全アクション損失を通じて、モデリングをバッチインフラストラクチャに適応させます。
その結果,1日に1回発生するバッチユーザ埋め込みと,ユーザがアクションを行うたびに発生するリアルタイムユーザ埋め込みとの間には,大きなギャップがあることが判明した。
論文 参考訳(メタデータ) (2022-05-09T18:26:51Z) - Incremental user embedding modeling for personalized text classification [12.381095398791352]
個々のユーザプロファイルとインタラクション履歴は、現実世界のアプリケーションでカスタマイズされたエクスペリエンスを提供する上で重要な役割を果たす。
本稿では,ユーザの最近のインタラクション履歴を動的に統合したインクリメンタルなユーザ埋め込みモデリング手法を提案する。
Redditデータセットに基づくパーソナライズされた多クラス分類タスクに適用することで,このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-02-13T17:33:35Z) - User-click Modelling for Predicting Purchase Intent [0.0]
この論文は、ユーザの振る舞いをモデル化するオープンな数学的問題に対する構造化された調査に寄与する。
企業がWebサイトとのユーザインタラクションを理解することは、消費者の振る舞いに関するリッチで個人化された洞察を提供するため、価値がある。
論文 参考訳(メタデータ) (2021-12-03T16:37:48Z) - PreSizE: Predicting Size in E-Commerce using Transformers [76.33790223551074]
PreSizEは、Transformerを使って正確なサイズ予測を行う新しいディープラーニングフレームワークである。
我々は,PreSizEが従来の最先端のベースラインよりも優れた予測性能を実現できることを示した。
概念実証として、PreSizEによるサイズ予測が、既存の生産推奨システムに統合できることを実証しています。
論文 参考訳(メタデータ) (2021-05-04T15:23:59Z) - Modeling High-order Interactions across Multi-interests for Micro-video
Reommendation [65.16624625748068]
利用者の興味表現を高めるためのセルフオーバーCoアテンションモジュールを提案します。
特に、まず相関パターンを異なるレベルでモデル化し、次に自己注意を使って特定のレベルで相関パターンをモデル化します。
論文 参考訳(メタデータ) (2021-04-01T07:20:15Z) - Disentangled Graph Collaborative Filtering [100.26835145396782]
Disentangled Graph Collaborative Filtering (DGCF)は、インタラクションデータからユーザとアイテムの情報表現を学ぶための新しいモデルである。
ユーザ・イテムのインタラクション毎に意図を超越した分布をモデル化することにより、インテント・アウェアなインタラクショングラフと表現を反復的に洗練する。
DGCFはNGCF、DisenGCN、MacridVAEといった最先端モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-07-03T15:37:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。