論文の概要: Large Language Models Based Automatic Synthesis of Software
Specifications
- arxiv url: http://arxiv.org/abs/2304.09181v1
- Date: Tue, 18 Apr 2023 01:22:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 16:34:14.375504
- Title: Large Language Models Based Automatic Synthesis of Software
Specifications
- Title(参考訳): ソフトウェア仕様の自動合成に基づく大規模言語モデル
- Authors: Shantanu Mandal, Adhrik Chethan, Vahid Janfaza, S M Farabi Mahmud,
Todd A Anderson, Javier Turek, Jesmin Jahan Tithi, Abdullah Muzahid
- Abstract要約: SpecSynは、自然言語ソースからソフトウェア仕様を自動的に合成するフレームワークである。
提案手法は,シーケンス・ツー・シーケンスの学習問題として,ソフトウェア仕様の合成を定式化する。
- 参考スコア(独自算出の注目度): 3.081650600579376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Software configurations play a crucial role in determining the behavior of
software systems. In order to ensure safe and error-free operation, it is
necessary to identify the correct configuration, along with their valid bounds
and rules, which are commonly referred to as software specifications. As
software systems grow in complexity and scale, the number of configurations and
associated specifications required to ensure the correct operation can become
large and prohibitively difficult to manipulate manually. Due to the fast pace
of software development, it is often the case that correct software
specifications are not thoroughly checked or validated within the software
itself. Rather, they are frequently discussed and documented in a variety of
external sources, including software manuals, code comments, and online
discussion forums. Therefore, it is hard for the system administrator to know
the correct specifications of configurations due to the lack of clarity,
organization, and a centralized unified source to look at. To address this
challenge, we propose SpecSyn a framework that leverages a state-of-the-art
large language model to automatically synthesize software specifications from
natural language sources. Our approach formulates software specification
synthesis as a sequence-to-sequence learning problem and investigates the
extraction of specifications from large contextual texts. This is the first
work that uses a large language model for end-to-end specification synthesis
from natural language texts. Empirical results demonstrate that our system
outperforms prior the state-of-the-art specification synthesis tool by 21% in
terms of F1 score and can find specifications from single as well as multiple
sentences.
- Abstract(参考訳): ソフトウェア構成は、ソフトウェアシステムの振る舞いを決定する上で重要な役割を果たす。
安全かつエラーのない操作を保証するためには、ソフトウェア仕様と呼ばれる有効な境界とルールとともに、正しい構成を特定する必要がある。
ソフトウェアシステムが複雑でスケールするにつれて、正しい操作を保証するのに必要な構成や仕様の数が大きくなり、手作業で操作するのが難しくなります。
ソフトウェア開発のペースが速いため、正しいソフトウェア仕様がソフトウェア自体内で徹底的にチェックまたは検証されていない場合が多い。
むしろ、ソフトウェアマニュアル、コードコメント、オンラインディスカッションフォーラムなど、さまざまな外部ソースで頻繁に議論され、文書化されている。
したがって、システム管理者は、明確さ、組織、一元的に統合されたソースが欠如しているため、構成の正しい仕様を知ることは困難である。
この課題に対処するために,我々は,最先端の大規模言語モデルを利用して自然言語ソースからソフトウェア仕様を自動的に合成するフレームワークspecsynを提案する。
提案手法は,逐次学習問題としてソフトウェア仕様合成を定式化し,大規模文脈テキストからの仕様抽出について検討する。
これは、自然言語テキストからエンドツーエンドの仕様合成に大規模な言語モデルを使用する最初の作品である。
実験の結果,本システムはf1スコアの点で,最先端の仕様合成ツールよりも21%優れており,単文や複数文から仕様を見出すことができることがわかった。
関連論文リスト
- NoviCode: Generating Programs from Natural Language Utterances by Novices [59.71218039095155]
初心者非プログラマによるAPIと自然言語記述を入力とする新しいNLプログラミングタスクであるNoviCodeを提示する。
我々は、NoviCodeがコード合成領域における挑戦的なタスクであることを示し、非技術的命令から複雑なコードを生成することは、現在のText-to-Codeパラダイムを超えている。
論文 参考訳(メタデータ) (2024-07-15T11:26:03Z) - Enchanting Program Specification Synthesis by Large Language Models using Static Analysis and Program Verification [15.686651364655958]
AutoSpecは、自動プログラム検証のための仕様を合成するための自動化アプローチである。
仕様の汎用性における既存の作業の欠点を克服し、完全な証明のために十分かつ適切な仕様を合成する。
実世界のX509パーサプロジェクトでプログラムを検証するためにうまく適用することができる。
論文 参考訳(メタデータ) (2024-03-31T18:15:49Z) - SpecGen: Automated Generation of Formal Program Specifications via Large Language Models [20.36964281778921]
SpecGenは、大規模言語モデルに基づく形式的なプログラム仕様生成のための新しいテクニックである。
SV-COMP 279ベンチマークと手動で構築したデータセットを含む2つのデータセット上でSpecGenを評価する。
論文 参考訳(メタデータ) (2024-01-16T20:13:50Z) - Guess & Sketch: Language Model Guided Transpilation [59.02147255276078]
学習されたトランスパイレーションは、手作業による書き直しやエンジニアリングの取り組みに代わるものだ。
確率的ニューラルネットワークモデル(LM)は、入力毎に可塑性出力を生成するが、正確性を保証するコストがかかる。
Guess & Sketch は LM の特徴からアライメントと信頼性情報を抽出し、意味的等価性を解決するためにシンボリック・ソルバに渡す。
論文 参考訳(メタデータ) (2023-09-25T15:42:18Z) - A General Framework for Verification and Control of Dynamical Models via Certificate Synthesis [54.959571890098786]
システム仕様を符号化し、対応する証明書を定義するためのフレームワークを提供する。
コントローラと証明書を形式的に合成する自動化手法を提案する。
我々のアプローチは、ニューラルネットワークの柔軟性を利用して、制御のための安全な学習の幅広い分野に寄与する。
論文 参考訳(メタデータ) (2023-09-12T09:37:26Z) - An xAI Approach for Data-to-Text Processing with ASP [39.58317527488534]
本稿では,xAI要求に準拠するフレームワークを提案する。
テキスト記述は階層的に整理され、テキストがさらに詳細で豊かになるトップダウン構造になっている。
自然言語記述の構造の生成も論理規則によって管理される。
論文 参考訳(メタデータ) (2023-08-30T09:09:09Z) - Learning-Based Automatic Synthesis of Software Code and Configuration [0.951828574518325]
大規模な自動ソフトウェア生成と構成は非常に複雑で難しい作業です。
まず,入力出力仕様で自動的にソフトウェアを合成することを提案する。
2つ目の課題として,異なる入力ファイルから大規模ソフトウェアの構成を合成することを提案する。
論文 参考訳(メタデータ) (2023-05-25T01:41:30Z) - A Conversational Paradigm for Program Synthesis [110.94409515865867]
本稿では,大規模言語モデルを用いた対話型プログラム合成手法を提案する。
私たちは、自然言語とプログラミング言語のデータに基づいて、CodeGenと呼ばれる大規模な言語モデルのファミリーを訓練します。
本研究は,会話能力の出現と,提案した会話プログラム合成パラダイムの有効性を示すものである。
論文 参考訳(メタデータ) (2022-03-25T06:55:15Z) - On the validity of pre-trained transformers for natural language
processing in the software engineering domain [78.32146765053318]
ソフトウェア工学データを用いて訓練されたBERT変換器モデルと一般領域データに基づく変換器との比較を行った。
ソフトウェアエンジニアリングのコンテキストを理解するために必要なタスクに対しては,ソフトウェアエンジニアリングデータの事前学習が重要であることを示す。
論文 参考訳(メタデータ) (2021-09-10T08:46:31Z) - Multi-modal Program Inference: a Marriage of Pre-trainedLanguage Models
and Component-based Synthesis [15.427687814482724]
マルチモーダルプログラム合成(マルチモーダルプログラムせき、英: Multi-modal program synthesis)とは、プログラム(コード)を異なる形式で指定した仕様から合成するタスクである。
例は正確だが不完全な仕様を提供し、自然言語は曖昧だがより「完全」なタスク記述を提供する。
2つのプログラミング領域に対するマルチモーダル合成システムのインスタンス化に,我々の組み合わせアプローチを用いる。
論文 参考訳(メタデータ) (2021-09-03T16:12:04Z) - Leveraging Language to Learn Program Abstractions and Search Heuristics [66.28391181268645]
LAPS(Language for Abstraction and Program Search)は、自然言語アノテーションを用いて、ライブラリとニューラルネットワークによる合成のための検索モデルの共同学習をガイドする手法である。
最先端のライブラリ学習システム(DreamCoder)に統合されると、LAPSは高品質なライブラリを生成し、検索効率と一般化を改善する。
論文 参考訳(メタデータ) (2021-06-18T15:08:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。