Early Detection of Parkinson's Disease using Motor Symptoms and Machine
Learning
- URL: http://arxiv.org/abs/2304.09245v1
- Date: Tue, 18 Apr 2023 19:13:05 GMT
- Title: Early Detection of Parkinson's Disease using Motor Symptoms and Machine
Learning
- Authors: Poojaa C and John Sahaya Rani Alex
- Abstract summary: This work aims at focusing on early-occurring, common symptoms, such as motor and gait related parameters, to arrive at a quantitative analysis on the feasibility of an economical and a robust wearable device.
A subset of the Parkinson's Progression Markers Initiative (PPMI), PPMI Gait dataset has been utilised for feature-selection.
Identified influential features has then been used to test real-time data for early detection of Parkinson Syndrome, with a model accuracy of 91.9%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parkinson's disease (PD) has been found to affect 1 out of every 1000 people,
being more inclined towards the population above 60 years. Leveraging
wearable-systems to find accurate biomarkers for diagnosis has become the need
of the hour, especially for a neurodegenerative condition like Parkinson's.
This work aims at focusing on early-occurring, common symptoms, such as motor
and gait related parameters to arrive at a quantitative analysis on the
feasibility of an economical and a robust wearable device. A subset of the
Parkinson's Progression Markers Initiative (PPMI), PPMI Gait dataset has been
utilised for feature-selection after a thorough analysis with various Machine
Learning algorithms. Identified influential features has then been used to test
real-time data for early detection of Parkinson Syndrome, with a model accuracy
of 91.9%
Related papers
- Determining the severity of Parkinson's disease in patients using a
multi task neural network [0.7499722271664147]
Parkinson's disease is easy to diagnose when it is advanced, but difficult to diagnose in its early stages.
This study analyzes a set of variables that can be easily extracted from voice analysis.
A success rate of 99.15% has been achieved in the problem of predicting whether a person suffers from severe Parkinson's disease or non-severe Parkinson's disease.
arXiv Detail & Related papers (2024-02-08T08:55:34Z) - Deep Learning for Time Series Classification of Parkinson's Disease Eye
Tracking Data [0.0]
We use state-of-the-art deep learning algorithms to perform Parkinson's disease classification using eye-tracking data from saccade experiments.
We find that the models are able to learn the classification task and generalize to unseen subjects.
arXiv Detail & Related papers (2023-11-28T00:03:18Z) - Parkinson's Disease Detection through Vocal Biomarkers and Advanced
Machine Learning Algorithms [0.0]
This study explores the potential of vocal feature alterations in PD patients as a means of early disease prediction.
utilizing a variety of advanced machine-learning algorithms, including XGBoost, LightGBM, Bagging, AdaBoost, and Support Vector Machine.
LightGBM exhibited a remarkable sensitivity of 100% and specificity of 94.43%, surpassing other machine learning algorithms in accuracy and AUC scores.
arXiv Detail & Related papers (2023-11-09T15:21:10Z) - An experimental study for early diagnosing Parkinson's disease using
machine learning [1.534667887016089]
This experimental work used Machine Learning techniques to automate the early detection of Parkinson's Disease.
In this study, we develop ML models utilizing a public dataset of 130 individuals.
We obtain 100% accuracy in classifying PD and RBD patients, as well as 92% accuracy in classifying PD and HC individuals.
arXiv Detail & Related papers (2023-10-20T16:59:18Z) - Deep Learning Predicts Prevalent and Incident Parkinson's Disease From
UK Biobank Fundus Imaging [13.132022790511005]
Parkinson's disease is the world's fastest-growing neurological disorder.
Current diagnostic methods are expensive and have limited availability.
We highlight retinal fundus imaging, often termed a window to the brain, as a diagnostic screening modality for Parkinson's disease.
arXiv Detail & Related papers (2023-02-13T22:30:16Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
We present a method for predicting the medication status of Parkinson's disease patients using the public mPower dataset.
The proposed method shows promising results in predicting three medication statuses objectively.
arXiv Detail & Related papers (2022-07-26T02:08:08Z) - Subgroup discovery of Parkinson's Disease by utilizing a multi-modal
smart device system [63.20765930558542]
We used smartwatches and smartphones to collect multi-modal data from 504 participants, including PD patients, DD and HC.
We were able to show that by combining various modalities, classification accuracy improved and further PD clusters were discovered.
arXiv Detail & Related papers (2022-05-12T08:59:57Z) - Reducing a complex two-sided smartwatch examination for Parkinson's
Disease to an efficient one-sided examination preserving machine learning
accuracy [63.20765930558542]
We have recorded participants performing technology-based assessments in a prospective study to research Parkinson's Disease (PD)
This study provided the largest PD sample size of two-hand synchronous smartwatch measurements.
arXiv Detail & Related papers (2022-05-11T09:12:59Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Vision-based Estimation of MDS-UPDRS Gait Scores for Assessing
Parkinson's Disease Motor Severity [39.51722822896373]
Parkinson's disease (PD) is a progressive neurological disorder affecting motor function.
Physical severity of PD impairments can be quantified through the Movement Disorder Society Unified Parkinson's Disease Rating Scale.
We propose a computer vision-based model that observes non-intrusive video recordings of individuals, extracts their 3D body skeletons, tracks them through time, and classifies the movements according to the MDS-UPDRS gait scores.
arXiv Detail & Related papers (2020-07-17T11:49:30Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.