SigSegment: A Signal-Based Segmentation Algorithm for Identifying
Anomalous Driving Behaviours in Naturalistic Driving Videos
- URL: http://arxiv.org/abs/2304.09247v1
- Date: Thu, 13 Apr 2023 22:38:18 GMT
- Title: SigSegment: A Signal-Based Segmentation Algorithm for Identifying
Anomalous Driving Behaviours in Naturalistic Driving Videos
- Authors: Kelvin Kwakye, Younho Seong, Armstrong Aboah, Sun Yi
- Abstract summary: We propose a Signal-Based anomaly detection algorithm that segments videos into anomalies and non-anomalies.
The proposed method achieved an overlap score of 0.5424 and ranked 9th on the public leader board in the AI City Challenge 2023.
- Score: 5.735035463793008
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In recent years, distracted driving has garnered considerable attention as it
continues to pose a significant threat to public safety on the roads. This has
increased the need for innovative solutions that can identify and eliminate
distracted driving behavior before it results in fatal accidents. In this
paper, we propose a Signal-Based anomaly detection algorithm that segments
videos into anomalies and non-anomalies using a deep CNN-LSTM classifier to
precisely estimate the start and end times of an anomalous driving event. In
the phase of anomaly detection and analysis, driver pose background estimation,
mask extraction, and signal activity spikes are utilized. A Deep CNN-LSTM
classifier was applied to candidate anomalies to detect and classify final
anomalies. The proposed method achieved an overlap score of 0.5424 and ranked
9th on the public leader board in the AI City Challenge 2023, according to
experimental validation results.
Related papers
- BatchNorm-based Weakly Supervised Video Anomaly Detection [117.11382325721016]
In weakly supervised video anomaly detection, temporal features of abnormal events often exhibit outlier characteristics.
We propose a novel method, BN-WVAD, which incorporates BatchNorm into WVAD.
The proposed BN-WVAD model demonstrates state-of-the-art performance on UCF-Crime with an AUC of 87.24%, and XD-Violence, where AP reaches up to 84.93%.
arXiv Detail & Related papers (2023-11-26T17:47:57Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications.
An inconspicuous yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection and localization in an unsupervised fashion.
We propose a novel Multi-Scale Flow-based framework dubbed MSFlow composed of asymmetrical parallel flows followed by a fusion flow.
Our MSFlow achieves a new state-of-the-art with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8%, and PRO score of 97.1%.
arXiv Detail & Related papers (2023-08-29T13:38:35Z) - UGainS: Uncertainty Guided Anomaly Instance Segmentation [80.12253291709673]
A single unexpected object on the road can cause an accident or lead to injuries.
Current approaches tackle anomaly segmentation by assigning an anomaly score to each pixel.
We propose an approach that produces accurate anomaly instance masks.
arXiv Detail & Related papers (2023-08-03T20:55:37Z) - Anomaly Detection in Driving by Cluster Analysis Twice [0.0]
This study proposes a method namely Anomaly Detection in Driving by Cluster Analysis Twice (ADDCAT)
An event is said to be an anomaly if it never fits with the major cluster, which is considered as the pattern of normality in driving.
This method provides a way to detect anomalies in driving with no prior training processes and huge computational costs needed.
arXiv Detail & Related papers (2022-12-15T09:53:49Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Leveraging Trajectory Prediction for Pedestrian Video Anomaly Detection [14.740178121212132]
We propose to leverage trajectory localization and prediction for unsupervised pedestrian anomaly event detection.
Our proposed framework rely on the prediction errors of normal and abnormal pedestrian trajectories to detect anomalies spatially and temporally.
We present experimental results on real-world benchmark datasets on varying timescales and show that our proposed trajectory-predictor-based anomaly detection pipeline is effective and efficient.
arXiv Detail & Related papers (2022-07-05T19:44:34Z) - Driving Anomaly Detection Using Conditional Generative Adversarial
Network [26.45460503638333]
This study proposes an unsupervised method to quantify driving anomalies using a conditional generative adversarial network (GAN)
The approach predicts upcoming driving scenarios by conditioning the models on the previously observed signals.
The results are validated with perceptual evaluations, where annotators are asked to assess the risk and familiarity of the videos detected with high anomaly scores.
arXiv Detail & Related papers (2022-03-15T22:10:01Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - A Vision-based System for Traffic Anomaly Detection using Deep Learning
and Decision Trees [2.490941231944805]
We propose a Decision-Tree - enabled approach powered by Deep Learning for extracting anomalies from traffic cameras.
Our approach included creating a detection model, followed by anomaly detection and analysis.
The proposed approach yielded an F1 score of 0.8571, and an S4 score of 0.5686, per the experimental validation.
arXiv Detail & Related papers (2021-04-14T13:48:13Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
We propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design.
Our proposed method obtains the frame-level AUROC score of 88.3% on the CUHK Avenue dataset.
arXiv Detail & Related papers (2020-11-05T11:34:12Z) - Driver Anomaly Detection: A Dataset and Contrastive Learning Approach [17.020790792750457]
We propose a contrastive learning approach to learn a metric to differentiate normal driving from anomalous driving.
Our method reaches 0.9673 AUC on the test set, demonstrating the effectiveness of the contrastive learning approach on the anomaly detection task.
arXiv Detail & Related papers (2020-09-30T13:23:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.