Anomaly Detection in Driving by Cluster Analysis Twice
- URL: http://arxiv.org/abs/2212.07691v1
- Date: Thu, 15 Dec 2022 09:53:49 GMT
- Title: Anomaly Detection in Driving by Cluster Analysis Twice
- Authors: Chung-Hao Lee, Yen-Fu Chen
- Abstract summary: This study proposes a method namely Anomaly Detection in Driving by Cluster Analysis Twice (ADDCAT)
An event is said to be an anomaly if it never fits with the major cluster, which is considered as the pattern of normality in driving.
This method provides a way to detect anomalies in driving with no prior training processes and huge computational costs needed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Events deviating from normal traffic patterns in driving, anomalies, such as
aggressive driving or bumpy roads, may harm delivery efficiency for
transportation and logistics (T&L) business. Thus, detecting anomalies in
driving is critical for the T&L industry. So far numerous researches have used
vehicle sensor data to identify anomalies. Most previous works captured
anomalies by using deep learning or machine learning algorithms, which require
prior training processes and huge computational costs. This study proposes a
method namely Anomaly Detection in Driving by Cluster Analysis Twice (ADDCAT)
which clusters the processed sensor data in different physical properties. An
event is said to be an anomaly if it never fits with the major cluster, which
is considered as the pattern of normality in driving. This method provides a
way to detect anomalies in driving with no prior training processes and huge
computational costs needed. This paper validated the performance of the method
on an open dataset.
Related papers
- Advance Real-time Detection of Traffic Incidents in Highways using Vehicle Trajectory Data [3.061662434597097]
This study uses vehicle trajectory data and traffic incident data on I-10, one of the most crash-prone highways in Louisiana.
Various machine learning algorithms are used to detect a trajectory that is likely to face an incident in the downstream road section.
Results suggest that the Random Forest model achieves the best performance for predicting an incident with reasonable recall value and discrimination capability.
arXiv Detail & Related papers (2024-08-15T00:51:48Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Anomalous Behavior Detection in Trajectory Data of Older Drivers [0.8426358786287627]
We propose an Edge-Attributed Matrix that can represent the key properties of temporally-detailed trajectory datasets.
Experiments using real-world datasets demonstrated that our approach identifies abnormal driving behaviors.
arXiv Detail & Related papers (2023-11-29T17:22:28Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Unsupervised Driving Event Discovery Based on Vehicle CAN-data [62.997667081978825]
This work presents a simultaneous clustering and segmentation approach for vehicle CAN-data that identifies common driving events in an unsupervised manner.
We evaluate our approach with a dataset of real Tesla Model 3 vehicle CAN-data and a two-hour driving session that we annotated with different driving events.
arXiv Detail & Related papers (2023-01-12T13:10:47Z) - Driving Anomaly Detection Using Conditional Generative Adversarial
Network [26.45460503638333]
This study proposes an unsupervised method to quantify driving anomalies using a conditional generative adversarial network (GAN)
The approach predicts upcoming driving scenarios by conditioning the models on the previously observed signals.
The results are validated with perceptual evaluations, where annotators are asked to assess the risk and familiarity of the videos detected with high anomaly scores.
arXiv Detail & Related papers (2022-03-15T22:10:01Z) - Anomaly Detection in Multi-Agent Trajectories for Automated Driving [2.5211566369910967]
Similar to humans, automated vehicles are supposed to perform anomaly detection.
Our innovation is the ability to jointly learn multiple trajectories of a dynamic number of agents.
arXiv Detail & Related papers (2021-10-15T08:07:31Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
We propose a method to generate artificial traffic-related training data for deep traffic light detectors.
This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds.
It also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state.
arXiv Detail & Related papers (2020-11-07T19:57:22Z) - Driver Anomaly Detection: A Dataset and Contrastive Learning Approach [17.020790792750457]
We propose a contrastive learning approach to learn a metric to differentiate normal driving from anomalous driving.
Our method reaches 0.9673 AUC on the test set, demonstrating the effectiveness of the contrastive learning approach on the anomaly detection task.
arXiv Detail & Related papers (2020-09-30T13:23:21Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.