論文の概要: Deep Dynamic Cloud Lighting
- arxiv url: http://arxiv.org/abs/2304.09317v1
- Date: Tue, 18 Apr 2023 22:02:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 16:05:52.947792
- Title: Deep Dynamic Cloud Lighting
- Title(参考訳): ディープ・ダイナミック・クラウド・ライティング
- Authors: Pinar Satilmis, Thomas Bashford-Rogers
- Abstract要約: そこで本研究では,初めて全スキーダイナミッククラウドを実現するソリューションを提案する。
我々は、様々な時間スケールで空の照度を予測することを学ぶマルチ・タイムスケールの空の外観モデルを合成する。
- 参考スコア(独自算出の注目度): 3.4442294678697385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sky illumination is a core source of lighting in rendering, and a substantial
amount of work has been developed to simulate lighting from clear skies.
However, in reality, clouds substantially alter the appearance of the sky and
subsequently change the scene's illumination. While there have been recent
advances in developing sky models which include clouds, these all neglect cloud
movement which is a crucial component of cloudy sky appearance. In any sort of
video or interactive environment, it can be expected that clouds will move,
sometimes quite substantially in a short period of time. Our work proposes a
solution to this which enables whole-sky dynamic cloud synthesis for the first
time. We achieve this by proposing a multi-timescale sky appearance model which
learns to predict the sky illumination over various timescales, and can be used
to add dynamism to previous static, cloudy sky lighting approaches.
- Abstract(参考訳): 空の照明はレンダリングにおける中核的な光源であり、透明な空からの照明をシミュレートするためにかなりの量の作業が開発されている。
しかし、実際には雲は空の姿を大きく変え、その後、風景の照明を変化させる。
雲を含む空モデルの開発には最近の進歩があるが、雲の出現の重要な要素である雲の動きは無視されている。
あらゆる種類のビデオやインタラクティブな環境では、雲が短時間で動くことが期待できる。
本研究は,全天型動的クラウド合成を初めて実現するためのソリューションを提案する。
我々は,様々な時間スケールでの空光量予測を学習し,過去の静的曇り天空照明手法にダイナミズムを付加するマルチタイムスケール空視モデルを提案することにより,これを実現する。
関連論文リスト
- Precise Forecasting of Sky Images Using Spatial Warping [12.042758147684822]
本稿では,従来の手法よりも高解像度で将来のスカイイメージフレームを予測するためのディープラーニング手法を提案する。
我々の主な貢献は、地平線における雲の有害な影響に対抗するために最適なワープ法を導出することである。
論文 参考訳(メタデータ) (2024-09-18T17:25:42Z) - IDF-CR: Iterative Diffusion Process for Divide-and-Conquer Cloud Removal in Remote-sensing Images [55.40601468843028]
雲除去のための反復拡散過程(IDF-CR)を提案する。
IDF-CRは、ピクセル空間と潜在空間に対処する2段階のモデルに分けられる。
潜時空間の段階では、拡散モデルは低品質の雲の除去を高品質のクリーンな出力に変換する。
論文 参考訳(メタデータ) (2024-03-18T15:23:48Z) - Relightable Neural Actor with Intrinsic Decomposition and Pose Control [80.06094206522668]
提案するRelightable Neural Actorは、ポーズ駆動型ニューラルヒューマンモデルを学ぶための新しいビデオベース手法である。
トレーニングのためには、既知のが静的な照明条件下での人間のマルチビュー記録のみを必要とする。
実世界のシナリオにおける我々のアプローチを評価するため、屋内と屋外の異なる光条件下で記録された4つのアイデンティティを持つ新しいデータセットを収集した。
論文 参考訳(メタデータ) (2023-12-18T14:30:13Z) - The Sky's the Limit: Re-lightable Outdoor Scenes via a Sky-pixel Constrained Illumination Prior and Outside-In Visibility [18.46907109338604]
制約のない画像コレクションからの屋外シーンの逆レンダリングは難しい課題である。
我々は、どんなスカイピクセルでも、遠方からの光を直接観察できるという事実を生かしている。
提案手法は,高品質なアルベド,幾何学,照明,空の視認性を推定する。
論文 参考訳(メタデータ) (2023-11-28T16:39:49Z) - Masked Spatio-Temporal Structure Prediction for Self-supervised Learning
on Point Cloud Videos [75.9251839023226]
人間のアノテーションを使わずにポイントクラウドビデオの構造をキャプチャするMasked-temporal Structure Prediction (MaST-Pre)法を提案する。
MaST-Preは,2つの自己指導型学習タスクから構成される。まず,マスク付きポイントチューブを再構築することにより,ポイントクラウドビデオの出現情報を捉えることができる。
第2に、動作を学習するために、点管内の点数の変化を推定する時間的濃度差予測タスクを提案する。
論文 参考訳(メタデータ) (2023-08-18T02:12:54Z) - ScatterNeRF: Seeing Through Fog with Physically-Based Inverse Neural
Rendering [83.75284107397003]
本稿では,シーンをレンダリングし,霧のない背景を分解するニューラルネットワークレンダリング手法であるScatterNeRFを紹介する。
本研究では,散乱量とシーンオブジェクトの非絡み合い表現を提案し,物理に着想を得た損失を伴ってシーン再構成を学習する。
マルチビューIn-the-Wildデータをキャプチャして,大規模な霧室内でのキャプチャを制御し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-05-03T13:24:06Z) - UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical
Satellite Time Series [19.32220113046804]
本稿では,新しいアテンションベースアーキテクチャを組み合わせたマルチテンポラルクラウド除去手法UnCRtainTSを紹介する。
予測された不確かさがいかにして再現品質を正確に制御できるかを示す。
論文 参考訳(メタデータ) (2023-04-11T19:27:18Z) - Boosting Point Clouds Rendering via Radiance Mapping [49.24193509772339]
コンパクトなモデル設計でポイントクラウドレンダリングの画質向上に重点を置いている。
我々はNeRF表現を1ピクセルあたりの単一評価しか必要としない空間マッピング関数に単純化する。
提案手法は点雲上での最先端のレンダリングを実現し,先行研究を顕著なマージンで上回った。
論文 参考訳(メタデータ) (2022-10-27T01:25:57Z) - Generating the Cloud Motion Winds Field from Satellite Cloud Imagery
Using Deep Learning Approach [1.8655840060559172]
データ駆動型ディープラーニングアプローチに基づくクラウドモーションウィンドアルゴリズムについて検討する。
深層学習モデルを用いて、運動特徴表現を自動的に学習し、雲の風の場を直接出力する。
我々はまた、従来のアルゴリズムでは達成できない固定領域における雲の動きの風場を予測するために、単一の雲画像を使用することも試みている。
論文 参考訳(メタデータ) (2020-10-03T05:40:36Z) - Thick Cloud Removal of Remote Sensing Images Using Temporal Smoothness
and Sparsity-Regularized Tensor Optimization [3.65794756599491]
リモートセンシング画像では、雲の影に付随する厚い雲の存在が確率の高い事象である。
時間的滑らか度と空間規則化テンソル最適化に基づくリモートセンシング画像の高密度クラウド除去手法を提案する。
論文 参考訳(メタデータ) (2020-08-11T05:59:20Z) - Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation
and Spatial Supervision [68.35777836993212]
我々はPseudo-LiDAR点雲ネットワークを提案し、時間的および空間的に高品質な点雲列を生成する。
点雲間のシーンフローを活用することにより,提案ネットワークは3次元空間運動関係のより正確な表現を学習することができる。
論文 参考訳(メタデータ) (2020-06-20T03:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。