論文の概要: IDF-CR: Iterative Diffusion Process for Divide-and-Conquer Cloud Removal in Remote-sensing Images
- arxiv url: http://arxiv.org/abs/2403.11870v1
- Date: Mon, 18 Mar 2024 15:23:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 19:50:22.680591
- Title: IDF-CR: Iterative Diffusion Process for Divide-and-Conquer Cloud Removal in Remote-sensing Images
- Title(参考訳): IDF-CR:リモートセンシング画像における分流・対流雲除去の反復拡散過程
- Authors: Meilin Wang, Yexing Song, Pengxu Wei, Xiaoyu Xian, Yukai Shi, Liang Lin,
- Abstract要約: 雲除去のための反復拡散過程(IDF-CR)を提案する。
IDF-CRは、ピクセル空間と潜在空間に対処する2段階のモデルに分けられる。
潜時空間の段階では、拡散モデルは低品質の雲の除去を高品質のクリーンな出力に変換する。
- 参考スコア(独自算出の注目度): 55.40601468843028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning technologies have demonstrated their effectiveness in removing cloud cover from optical remote-sensing images. Convolutional Neural Networks (CNNs) exert dominance in the cloud removal tasks. However, constrained by the inherent limitations of convolutional operations, CNNs can address only a modest fraction of cloud occlusion. In recent years, diffusion models have achieved state-of-the-art (SOTA) proficiency in image generation and reconstruction due to their formidable generative capabilities. Inspired by the rapid development of diffusion models, we first present an iterative diffusion process for cloud removal (IDF-CR), which exhibits a strong generative capabilities to achieve component divide-and-conquer cloud removal. IDF-CR consists of a pixel space cloud removal module (Pixel-CR) and a latent space iterative noise diffusion network (IND). Specifically, IDF-CR is divided into two-stage models that address pixel space and latent space. The two-stage model facilitates a strategic transition from preliminary cloud reduction to meticulous detail refinement. In the pixel space stage, Pixel-CR initiates the processing of cloudy images, yielding a suboptimal cloud removal prior to providing the diffusion model with prior cloud removal knowledge. In the latent space stage, the diffusion model transforms low-quality cloud removal into high-quality clean output. We refine the Stable Diffusion by implementing ControlNet. In addition, an unsupervised iterative noise refinement (INR) module is introduced for diffusion model to optimize the distribution of the predicted noise, thereby enhancing advanced detail recovery. Our model performs best with other SOTA methods, including image reconstruction and optical remote-sensing cloud removal on the optical remote-sensing datasets.
- Abstract(参考訳): 深層学習技術は、光学リモートセンシング画像から雲を除去する効果を実証している。
畳み込みニューラルネットワーク(CNN)は、クラウド除去タスクにおいて優位性を発揮する。
しかし、畳み込み操作の固有の制限により、CNNはわずかに雲の閉塞に対処できる。
近年、拡散モデルは、画像生成と再構成において、その強大な生成能力により、最先端(SOTA)の習熟度を達成している。
拡散モデルの急激な発展に触発されて、我々はまず、成分分割・対流雲除去を実現するための強力な生成能力を示す雲除去のための反復拡散過程(IDF-CR)を提示する。
IDF-CRはピクセル空間雲除去モジュール(Pixel-CR)と遅延空間反復ノイズ拡散ネットワーク(IND)から構成される。
具体的には、IGF-CRはピクセル空間と潜在空間に対処する2段階のモデルに分けられる。
2段階のモデルは、予備的な雲の縮小から微妙な細部の改良への戦略的移行を促進する。
ピクセル空間の段階では、Pixel-CRは雲画像の処理を開始し、事前の雲除去知識を持つ拡散モデルを提供する前に、最適な雲の除去をもたらす。
潜時空間の段階では、拡散モデルは低品質の雲の除去を高品質のクリーンな出力に変換する。
ControlNetを実装して安定拡散を改良する。
さらに,拡散モデルに非教師付き反復雑音除去(INR)モジュールを導入し,予測された雑音の分布を最適化し,高度な詳細回復を向上する。
我々のモデルは、光学リモートセンシングデータセット上で、画像再構成や光リモートセンシングクラウド除去など、他のSOTA手法とよく機能する。
関連論文リスト
- Point Cloud Resampling with Learnable Heat Diffusion [58.050130177241186]
ポイントクラウド再サンプリングのための学習可能な熱拡散フレームワークを提案する。
前の固定された拡散モデルとは異なり、適応条件は点雲の幾何学的特徴を選択的に保存する。
論文 参考訳(メタデータ) (2024-11-21T13:44:18Z) - Diffusion Enhancement for Cloud Removal in Ultra-Resolution Remote
Sensing Imagery [48.14610248492785]
雲層は、光学リモートセンシング(RS)画像の品質と効果を著しく損なう。
既存のディープラーニング(DL)ベースのクラウド削除(CR)技術は、元の視覚的正当性と画像の詳細なセマンティック内容の正確な再構築に困難を伴う。
この課題に対処するために、データと方法論の面での強化を提案する。
論文 参考訳(メタデータ) (2024-01-25T13:14:17Z) - Iterative Token Evaluation and Refinement for Real-World
Super-Resolution [77.74289677520508]
実世界の画像超解像(RWSR)は、低品質(LQ)画像が複雑で未同定の劣化を起こすため、長年にわたる問題である。
本稿では,RWSRのための反復的トークン評価・リファインメントフレームワークを提案する。
ITERはGAN(Generative Adversarial Networks)よりも訓練が容易であり,連続拡散モデルよりも効率的であることを示す。
論文 参考訳(メタデータ) (2023-12-09T17:07:32Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
本稿では,事前学習した潜伏拡散モデルを用いて,超低照度画像の高精細化のためのニューラルISPを実現することを提案する。
具体的には、RAWドメイン上で動作するために事前訓練された潜在拡散モデルを調整するために、軽量なテーミングモジュールのセットをトレーニングする。
遅延拡散モデルにおけるUNet復調と復号化の異なる役割を観察し、低照度画像強調タスクを遅延空間低周波コンテンツ生成と復号位相高周波ディテール保守に分解するきっかけとなる。
論文 参考訳(メタデータ) (2023-12-02T04:31:51Z) - UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical
Satellite Time Series [19.32220113046804]
本稿では,新しいアテンションベースアーキテクチャを組み合わせたマルチテンポラルクラウド除去手法UnCRtainTSを紹介する。
予測された不確かさがいかにして再現品質を正確に制御できるかを示す。
論文 参考訳(メタデータ) (2023-04-11T19:27:18Z) - ShadowDiffusion: When Degradation Prior Meets Diffusion Model for Shadow
Removal [74.86415440438051]
画像と劣化先行情報を統合した統合拡散フレームワークを提案する。
SRDデータセット上でのPSNRは31.69dBから34.73dBへと大幅に向上した。
論文 参考訳(メタデータ) (2022-12-09T07:48:30Z) - Exploring the Potential of SAR Data for Cloud Removal in Optical
Satellite Imagery [41.40522618945897]
我々は,SAR画像に埋め込まれた補完情報を活用するために,新しいグローバルローカル核融合型クラウド除去アルゴリズム(GLF-CR)を提案する。
提案アルゴリズムは高品質なクラウドフリーな画像を得ることができ、最先端のクラウド除去アルゴリズムに対して好適に機能する。
論文 参考訳(メタデータ) (2022-06-06T18:53:19Z) - Cloud removal in remote sensing images using generative adversarial
networks and SAR-to-optical image translation [0.618778092044887]
雲の除去は、幅広い衛星画像の応用により、多くの注目を集めている。
本研究では,2つの生成逆ネットワーク(GAN)を用いてこの問題の解決を試みる。
第1はSAR画像を光学画像に変換し、第2は前GANの変換画像を使用して雲を除去する。
論文 参考訳(メタデータ) (2020-12-22T17:19:14Z) - Multi-Head Linear Attention Generative Adversarial Network for Thin
Cloud Removal [5.753245638190626]
雲の薄い除去はリモートセンシング画像の利用を高めるために欠かせない手順である。
薄層雲除去のためのマルチヘッド線形注意生成ネットワーク(MLAGAN)を提案する。
6つのディープラーニングベースのシンクラウド除去ベンチマークと比較して、RICE1およびRICE2データセットの実験結果は、提案されたフレームワークMLA-GANがシンクラウド除去に優勢であることを示しています。
論文 参考訳(メタデータ) (2020-12-20T11:50:54Z) - Thick Cloud Removal of Remote Sensing Images Using Temporal Smoothness
and Sparsity-Regularized Tensor Optimization [3.65794756599491]
リモートセンシング画像では、雲の影に付随する厚い雲の存在が確率の高い事象である。
時間的滑らか度と空間規則化テンソル最適化に基づくリモートセンシング画像の高密度クラウド除去手法を提案する。
論文 参考訳(メタデータ) (2020-08-11T05:59:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。