論文の概要: Multi-scale Adaptive Fusion Network for Hyperspectral Image Denoising
- arxiv url: http://arxiv.org/abs/2304.09373v1
- Date: Wed, 19 Apr 2023 02:00:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 15:46:44.385063
- Title: Multi-scale Adaptive Fusion Network for Hyperspectral Image Denoising
- Title(参考訳): ハイパースペクトル画像復調のためのマルチスケール適応核融合ネットワーク
- Authors: Haodong Pan, Feng Gao, Junyu Dong, Qian Du
- Abstract要約: マルチスケール・アダプティブ・フュージョン・ネットワーク(MAFNet)を用いたHSI復調手法を提案する。
提案したMAFNetは、他の最先端技術よりも性能が向上している。
- 参考スコア(独自算出の注目度): 35.491878332394265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Removing the noise and improving the visual quality of hyperspectral images
(HSIs) is challenging in academia and industry. Great efforts have been made to
leverage local, global or spectral context information for HSI denoising.
However, existing methods still have limitations in feature interaction
exploitation among multiple scales and rich spectral structure preservation. In
view of this, we propose a novel solution to investigate the HSI denoising
using a Multi-scale Adaptive Fusion Network (MAFNet), which can learn the
complex nonlinear mapping between clean and noisy HSI. Two key components
contribute to improving the hyperspectral image denoising: A progressively
multiscale information aggregation network and a co-attention fusion module.
Specifically, we first generate a set of multiscale images and feed them into a
coarse-fusion network to exploit the contextual texture correlation.
Thereafter, a fine fusion network is followed to exchange the information
across the parallel multiscale subnetworks. Furthermore, we design a
co-attention fusion module to adaptively emphasize informative features from
different scales, and thereby enhance the discriminative learning capability
for denoising. Extensive experiments on synthetic and real HSI datasets
demonstrate that the proposed MAFNet has achieved better denoising performance
than other state-of-the-art techniques. Our codes are available at
\verb'https://github.com/summitgao/MAFNet'.
- Abstract(参考訳): ハイパースペクトル画像(HSI)のノイズ除去と視覚的品質向上は,学術・産業において困難である。
局所的・グローバル的・スペクトル的文脈情報をHSI復調に活用する努力が盛んに行われている。
しかし,既存の手法では,複数スケール間における特徴相互作用の活用やスペクトル構造保存に制限がある。
そこで本研究では, クリーンかつノイズの多いHSI間の複雑な非線形マッピングを学習可能なマルチスケール適応核融合ネットワーク(MAFNet)を用いて, HSIデノベーションを探索する新しい手法を提案する。
2つの重要なコンポーネントがハイパースペクトル画像のデノージングを改善するのに寄与している: 漸進的に多スケールな情報集約ネットワークとコアテンション融合モジュールである。
具体的には,まず,マルチスケール画像のセットを生成し,粗い拡散ネットワークに流し込み,文脈的テクスチャ相関を生かした。
その後、微細核融合ネットワークが続き、並列マルチスケールサブネットワークを介して情報を交換する。
さらに、異なる尺度から情報的特徴を適応的に強調するコアテンション融合モジュールを設計し、それによって識別学習能力を向上する。
合成および実HSIデータセットに関する大規模な実験は、提案されたMAFNetが、他の最先端技術よりも優れたノイズ発生性能を達成したことを示している。
私たちのコードは、 \verb'https://github.com/summitgao/MAFNet'で利用可能です。
関連論文リスト
- Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - A cross Transformer for image denoising [83.68175077524111]
直列ブロック(SB)、並列ブロック(PB)、残留ブロック(RB)を備えたクロストランスフォーマー(CTNet)を提案する。
CTNetは、実画像や合成画像のデノナイジングにおいて、一般的なデノナイジング法よりも優れている。
論文 参考訳(メタデータ) (2023-10-16T13:53:19Z) - Hyperspectral Image Denoising via Self-Modulating Convolutional Neural
Networks [15.700048595212051]
相関スペクトルと空間情報を利用した自己変調畳み込みニューラルネットワークを提案する。
モデルの中心には新しいブロックがあり、隣り合うスペクトルデータに基づいて、ネットワークが適応的に特徴を変換することができる。
合成データと実データの両方の実験解析により,提案したSM-CNNは,他の最先端HSI復調法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-09-15T06:57:43Z) - Degradation-Noise-Aware Deep Unfolding Transformer for Hyperspectral
Image Denoising [9.119226249676501]
ハイパースペクトル画像(HSI)は、帯域幅が狭いため、ノイズが多いことが多い。
HSIデータキューブのノイズを低減するため、モデル駆動型と学習型の両方の復調アルゴリズムが提案されている。
本稿では,これらの問題に対処するDNA-Net(Degradation-Noise-Aware Unfolding Network)を提案する。
論文 参考訳(メタデータ) (2023-05-06T13:28:20Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
深部畳み込みニューラルネットワーク(Deep Convolutional Neural Network, CNN)は、正確な構造情報を自動マイニングすることで、画像の復調に使用される。
動的畳み込みブロック(DCB)、2つのカスケードウェーブレット変換および拡張ブロック(WEB)、残留ブロック(RB)の3段階を経由した、MWDCNNによるCNNの多段階化を提案する。
論文 参考訳(メタデータ) (2022-09-26T03:28:23Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
本稿では,Deep Semantic Statistics Matching (D2SM) Denoising Networkを紹介する。
事前訓練された分類ネットワークの意味的特徴を利用して、意味的特徴空間における明瞭な画像の確率的分布と暗黙的に一致させる。
識別画像のセマンティックな分布を学習することで,ネットワークの認知能力を大幅に向上させることを実証的に見出した。
論文 参考訳(メタデータ) (2022-07-19T14:35:42Z) - SSCAN: A Spatial-spectral Cross Attention Network for Hyperspectral
Image Denoising [12.873607414761093]
本稿では,グループ畳み込みとアテンションモジュールを組み合わせた新しいHSIデノベーションネットワークSSCANを提案する。
ハイパースペクトル画像における空間情報とスペクトル情報を有効利用するためのスペクトル空間アテンションブロック(SSAB)を提案する。
実験結果から,提案したSSCANは,最先端のHSI復調アルゴリズムよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-05-23T14:36:17Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
ノイズの多いHSIからクリーンなHSIへのマッピングを学習するために,注目に基づくディープ残差ネットワークを提案する。
実験の結果,提案手法は定量的および視覚的評価において最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-04T08:36:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。