H-TSP: Hierarchically Solving the Large-Scale Travelling Salesman
Problem
- URL: http://arxiv.org/abs/2304.09395v1
- Date: Wed, 19 Apr 2023 03:10:30 GMT
- Title: H-TSP: Hierarchically Solving the Large-Scale Travelling Salesman
Problem
- Authors: Xuanhao Pan, Yan Jin, Yuandong Ding, Mingxiao Feng, Li Zhao, Lei Song,
Jiang Bian
- Abstract summary: We propose an end-to-end learning framework based on hierarchical reinforcement learning, called H-TSP, for addressing the large-scale Travelling Salesman Problem (TSP)
We show that H-TSP can achieve comparable results as SOTA search-based approaches, and we reduce the time consumption up to two orders of magnitude (3.32s vs. 395.85s)
Although there are still gaps to SOTA results with respect to solution quality, we believe H-TSP will be useful for practical applications, particularly those that are time-sensitive e.g., on-call routing and ride
- Score: 11.310986634385742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an end-to-end learning framework based on hierarchical
reinforcement learning, called H-TSP, for addressing the large-scale Travelling
Salesman Problem (TSP). The proposed H-TSP constructs a solution of a TSP
instance starting from the scratch relying on two components: the upper-level
policy chooses a small subset of nodes (up to 200 in our experiment) from all
nodes that are to be traversed, while the lower-level policy takes the chosen
nodes as input and outputs a tour connecting them to the existing partial route
(initially only containing the depot). After jointly training the upper-level
and lower-level policies, our approach can directly generate solutions for the
given TSP instances without relying on any time-consuming search procedures. To
demonstrate effectiveness of the proposed approach, we have conducted extensive
experiments on randomly generated TSP instances with different numbers of
nodes. We show that H-TSP can achieve comparable results (gap 3.42% vs. 7.32%)
as SOTA search-based approaches, and more importantly, we reduce the time
consumption up to two orders of magnitude (3.32s vs. 395.85s). To the best of
our knowledge, H-TSP is the first end-to-end deep reinforcement learning
approach that can scale to TSP instances of up to 10000 nodes. Although there
are still gaps to SOTA results with respect to solution quality, we believe
that H-TSP will be useful for practical applications, particularly those that
are time-sensitive e.g., on-call routing and ride hailing service.
Related papers
- Start from Zero: Triple Set Prediction for Automatic Knowledge Graph Completion [49.19814695500355]
We propose a graph-level automatic KG completion task called Triple Set Prediction (TSP)
TSP assumes none of the elements in the missing triples is given.
To tackle the huge candidate triples for prediction, we propose a novel and efficient subgraph-based method GPHT.
arXiv Detail & Related papers (2024-06-26T08:26:32Z) - Learn to Tour: Operator Design For Solution Feasibility Mapping in Pickup-and-delivery Traveling Salesman Problem [12.34897099691387]
This paper develops a learning method for a special class of traveling salesman problems (TSP)
It finds the shortest tour along a sequence of one-to-one pickup-and-delivery nodes.
In PDTSP, precedence constraints need to be satisfied that each pickup node must be visited before its corresponding delivery node.
arXiv Detail & Related papers (2024-04-17T15:05:51Z) - Hint-before-Solving Prompting: Guiding LLMs to Effectively Utilize
Encoded Knowledge [85.17343729885003]
We introduce Hint-before-Solving Prompting (HSP), which guides the model to generate hints for solving the problem.
HSP can effectively improve the accuracy of reasoning tasks.
We build the HSPMATH dataset based on HSP and fine-tuned Llemma-7B, reaching 64.3 accuracy.
arXiv Detail & Related papers (2024-02-22T05:58:03Z) - Pointerformer: Deep Reinforced Multi-Pointer Transformer for the
Traveling Salesman Problem [67.32731657297377]
Traveling Salesman Problem (TSP) is a classic routing optimization problem originally arising in the domain of transportation and logistics.
Recently, Deep Reinforcement Learning has been increasingly employed to solve TSP due to its high inference efficiency.
We propose a novel end-to-end DRL approach, referred to as Pointerformer, based on multi-pointer Transformer.
arXiv Detail & Related papers (2023-04-19T03:48:32Z) - DPTDR: Deep Prompt Tuning for Dense Passage Retrieval [53.217524851268216]
Deep prompt tuning (DPT) has gained great success in most natural language processing(NLP) tasks.
However, it is not well-investigated in dense retrieval where fine-tuning(FT) still dominates.
We propose two model-agnostic and task-agnostic strategies for DPT-based retrievers, namely retrieval-oriented intermediate pretraining and unified negative mining.
arXiv Detail & Related papers (2022-08-24T12:55:00Z) - Improving Generalization of Deep Reinforcement Learning-based TSP
Solvers [19.29028564568974]
We propose a novel approach named MAGIC that includes a deep learning architecture and a DRL training method.
Our architecture, which integrates a multilayer perceptron, a graph neural network, and an attention model, defines a policy that sequentially generates a traveling salesman solution.
Our training method includes several innovations: (1) we interleave DRL policy updates with local search (using a new local search technique), (2) we use a novel simple baseline, and (3) we apply gradient learning.
arXiv Detail & Related papers (2021-10-06T15:16:19Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
We introduce RandLA-Net, an efficient and lightweight neural architecture to infer per-point semantics for large-scale point clouds.
The key to our approach is to use random point sampling instead of more complex point selection approaches.
Our RandLA-Net can process 1 million points in a single pass up to 200x faster than existing approaches.
arXiv Detail & Related papers (2021-07-06T05:08:34Z) - Learning to Optimise General TSP Instances [2.6782615615913348]
The Travelling Salesman Problem (TSP) is a classical optimisation problem.
Deep learning has been successfully extended to meta-learning, where previous solving efforts assist in learning how to optimise future instances.
This paper introduces a new learning-based approach to solve a variety of different and common TSP problems.
arXiv Detail & Related papers (2020-10-23T07:37:16Z) - Solving the Clustered Traveling Salesman Problem via TSP methods [16.304413942851397]
The Clustered Traveling Salesman Problem (CTSP) is a variant of the popular Traveling Salesman Problem (TSP)
In this work, we explore a transformation approach that solves the CTSP by converting it to the well-studied TSP.
arXiv Detail & Related papers (2020-07-10T08:56:06Z) - Towards Feature-free TSP Solver Selection: A Deep Learning Approach [35.05032046810422]
The Travelling Salesman Problem (TSP) is a classical NP-hard problem and has broad applications in many disciplines and industries.
In this paper, we propose a deep learning framework, CTAS, for TSP solver selection in an end-to-end manner.
arXiv Detail & Related papers (2020-06-01T04:48:36Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.