Learning Resource Scheduling with High Priority Users using Deep
Deterministic Policy Gradients
- URL: http://arxiv.org/abs/2304.09488v1
- Date: Wed, 19 Apr 2023 08:18:11 GMT
- Title: Learning Resource Scheduling with High Priority Users using Deep
Deterministic Policy Gradients
- Authors: Steffen Gracla, Edgar Beck, Carsten Bockelmann, Armin Dekorsy
- Abstract summary: This paper explores the application of Deep Deterministic Policy Gradient(ddpg) methods for learning a communications resource scheduling algorithm.
Unlike the popular Deep-Q-Network methods, the ddpg is able to produce continuous-valued output.
- Score: 7.570246812206769
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in mobile communication capabilities open the door for closer
integration of pre-hospital and in-hospital care processes. For example,
medical specialists can be enabled to guide on-site paramedics and can, in
turn, be supplied with live vitals or visuals. Consolidating such
performance-critical applications with the highly complex workings of mobile
communications requires solutions both reliable and efficient, yet easy to
integrate with existing systems. This paper explores the application of Deep
Deterministic Policy Gradient~(\ddpg) methods for learning a communications
resource scheduling algorithm with special regards to priority users. Unlike
the popular Deep-Q-Network methods, the \ddpg is able to produce
continuous-valued output. With light post-processing, the resulting scheduler
is able to achieve high performance on a flexible sum-utility goal.
Related papers
- Large Language Models for Power Scheduling: A User-Centric Approach [6.335540414370735]
We introduce a novel architecture for resource scheduling problems by converting an arbitrary user's voice request (VRQ) into a resource allocation vector.
Specifically, we design an LLM intent recognition agent to translate the request into an optimization problem (OP), an LLM OP parameter identification agent, and an OP solving agent.
arXiv Detail & Related papers (2024-06-29T15:47:28Z) - Pruning the Way to Reliable Policies: A Multi-Objective Deep Q-Learning Approach to Critical Care [46.2482873419289]
We introduce a deep Q-learning approach to obtain more reliable critical care policies.
We evaluate our method in off-policy and offline settings using simulated environments and real health records from intensive care units.
arXiv Detail & Related papers (2023-06-13T18:02:57Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Computation Offloading and Resource Allocation in F-RANs: A Federated
Deep Reinforcement Learning Approach [67.06539298956854]
fog radio access network (F-RAN) is a promising technology in which the user mobile devices (MDs) can offload computation tasks to the nearby fog access points (F-APs)
arXiv Detail & Related papers (2022-06-13T02:19:20Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments.
To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach goals for a wide range of tasks on command.
We propose Planning to Practice, a method that makes it practical to train goal-conditioned policies for long-horizon tasks.
arXiv Detail & Related papers (2022-05-17T06:58:17Z) - Learning Robust Scheduling with Search and Attention [6.217548079545464]
Allocating physical layer resources to users based on channel quality, buffer size, requirements and constraints represents one of the central optimization problems in the management of radio resources.
This problem is even more pronounced in MU-MIMO scheduling where the scheduler can assign multiple users to the same time-frequency physical resources.
In this work we treat the MU-MIMO scheduling problem as a tree-structured problem and, borrowing from the recent successes of AlphaGo Zero, we investigate the feasibility of searching for the best performing solutions.
arXiv Detail & Related papers (2021-11-15T20:46:26Z) - Deep Reinforcement Model Selection for Communications Resource
Allocation in On-Site Medical Care [8.564319625930892]
This paper explores a resource allocation scenario where a scheduler must balance mixed performance metrics among connected users.
We present a scheduler that adaptively switches between different model-based scheduling algorithms.
The resulting ensemble scheduler is able to combine its constituent algorithms to maximize a sum-utility cost function.
arXiv Detail & Related papers (2021-11-12T12:04:53Z) - C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks [133.40619754674066]
Goal-conditioned reinforcement learning can solve tasks in a wide range of domains, including navigation and manipulation.
We propose the distant goal-reaching task by using search at training time to automatically generate intermediate states.
E-step corresponds to planning an optimal sequence of waypoints using graph search, while the M-step aims to learn a goal-conditioned policy to reach those waypoints.
arXiv Detail & Related papers (2021-10-22T22:05:31Z) - Accelerating Federated Edge Learning via Optimized Probabilistic Device
Scheduling [57.271494741212166]
This paper formulates and solves the communication time minimization problem.
It is found that the optimized policy gradually turns its priority from suppressing the remaining communication rounds to reducing per-round latency as the training process evolves.
The effectiveness of the proposed scheme is demonstrated via a use case on collaborative 3D objective detection in autonomous driving.
arXiv Detail & Related papers (2021-07-24T11:39:17Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Modular approach to data preprocessing in ALOHA and application to a
smart industry use case [0.0]
The paper addresses a modular approach, integrated into the ALOHA tool flow, to support the data preprocessing and transformation pipeline.
To demonstrate the effectiveness of the approach, we present some experimental results related to a keyword spotting use case.
arXiv Detail & Related papers (2021-02-02T06:48:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.