Large Language Models for Power Scheduling: A User-Centric Approach
- URL: http://arxiv.org/abs/2407.00476v3
- Date: Thu, 14 Nov 2024 06:06:09 GMT
- Title: Large Language Models for Power Scheduling: A User-Centric Approach
- Authors: Thomas Mongaillard, Samson Lasaulce, Othman Hicheur, Chao Zhang, Lina Bariah, Vineeth S. Varma, Hang Zou, Qiyang Zhao, Merouane Debbah,
- Abstract summary: We introduce a novel architecture for resource scheduling problems by converting an arbitrary user's voice request (VRQ) into a resource allocation vector.
Specifically, we design an LLM intent recognition agent to translate the request into an optimization problem (OP), an LLM OP parameter identification agent, and an OP solving agent.
- Score: 6.335540414370735
- License:
- Abstract: While traditional optimization and scheduling schemes are designed to meet fixed, predefined system requirements, future systems are moving toward user-driven approaches and personalized services, aiming to achieve high quality-of-experience (QoE) and flexibility. This challenge is particularly pronounced in wireless and digitalized energy networks, where users' requirements have largely not been taken into consideration due to the lack of a common language between users and machines. The emergence of powerful large language models (LLMs) marks a radical departure from traditional system-centric methods into more advanced user-centric approaches by providing a natural communication interface between users and devices. In this paper, for the first time, we introduce a novel architecture for resource scheduling problems by constructing three LLM agents to convert an arbitrary user's voice request (VRQ) into a resource allocation vector. Specifically, we design an LLM intent recognition agent to translate the request into an optimization problem (OP), an LLM OP parameter identification agent, and an LLM OP solving agent. To evaluate system performance, we construct a database of typical VRQs in the context of electric vehicle (EV) charging. As a proof of concept, we primarily use Llama 3 8B. Through testing with different prompt engineering scenarios, the obtained results demonstrate the efficiency of the proposed architecture. The conducted performance analysis allows key insights to be extracted. For instance, having a larger set of candidate OPs to model the real-world problem might degrade the final performance because of a higher recognition/OP classification noise level. All results and codes are open source.
Related papers
- Leveraging Fine-Tuned Retrieval-Augmented Generation with Long-Context Support: For 3GPP Standards [4.334100270812517]
Large language models (LLMs) struggle with technical standards in telecommunications.
We propose a fine-tuned retrieval-augmented generation (RAG) system based on the Phi-2 small language model (SLM)
Our experiments demonstrate substantial improvements over existing question-answering approaches in the telecom domain.
arXiv Detail & Related papers (2024-08-21T17:00:05Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
This approach entails the strategic use of well-crafted prompts to infuse human experience and knowledge into these sophisticated LLMs.
This integration represents the future paradigm of artificial intelligence (AI) as a service and AI for more ease.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - IDEAL: Leveraging Infinite and Dynamic Characterizations of Large Language Models for Query-focused Summarization [59.06663981902496]
Query-focused summarization (QFS) aims to produce summaries that answer particular questions of interest, enabling greater user control and personalization.
We investigate two indispensable characteristics that the LLMs-based QFS models should be harnessed, Lengthy Document Summarization and Efficiently Fine-grained Query-LLM Alignment.
These innovations pave the way for broader application and accessibility in the field of QFS technology.
arXiv Detail & Related papers (2024-07-15T07:14:56Z) - Edge Intelligence Optimization for Large Language Model Inference with Batching and Quantization [20.631476379056892]
Large Language Models (LLMs) are at the forefront of this movement.
LLMs require cloud hosting, which raises issues regarding privacy, latency, and usage limitations.
We present an edge intelligence optimization problem tailored for LLM inference.
arXiv Detail & Related papers (2024-05-12T02:38:58Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - A Semantic-Aware Multiple Access Scheme for Distributed, Dynamic 6G-Based Applications [14.51946231794179]
This paper introduces a novel formulation for the problem of multiple access to the wireless spectrum.
It aims to optimize the utilization-fairness trade-off, using the $alpha$-fairness metric.
A Semantic-Aware Multi-Agent Double and Dueling Deep Q-Learning (SAMA-D3QL) technique is proposed.
arXiv Detail & Related papers (2024-01-12T00:32:38Z) - Active Preference Inference using Language Models and Probabilistic Reasoning [13.523369679010685]
We introduce an inference-time algorithm that helps large language models infer user preferences.
Our algorithm uses a probabilistic model whose conditional distributions are defined by prompting an LLM.
Results in a simplified interactive web shopping setting with real product items show that an LLM equipped with our entropy reduction algorithm outperforms baselines.
arXiv Detail & Related papers (2023-12-19T09:58:54Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
Large Language Models (LLMs) excel in comprehending and generating human-like text.
This paper explores strategies for integrating Language Models (LLMs) with Information Retrieval (IR) systems.
arXiv Detail & Related papers (2023-11-21T02:01:01Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z) - LAMBO: Large AI Model Empowered Edge Intelligence [71.56135386994119]
Next-generation edge intelligence is anticipated to benefit various applications via offloading techniques.
Traditional offloading architectures face several issues, including heterogeneous constraints, partial perception, uncertain generalization, and lack of tractability.
We propose a Large AI Model-Based Offloading (LAMBO) framework with over one billion parameters for solving these problems.
arXiv Detail & Related papers (2023-08-29T07:25:42Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.