論文の概要: Learning Robust Visual-Semantic Embedding for Generalizable Person
Re-identification
- arxiv url: http://arxiv.org/abs/2304.09498v1
- Date: Wed, 19 Apr 2023 08:37:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 15:09:08.960391
- Title: Learning Robust Visual-Semantic Embedding for Generalizable Person
Re-identification
- Title(参考訳): 一般化可能な人物再識別のためのロバストなビジュアルセマンティック埋め込みの学習
- Authors: Suncheng Xiang, Jingsheng Gao, Mengyuan Guan, Jiacheng Ruan, Chengfeng
Zhou, Ting Liu, Dahong Qian, Yuzhuo Fu
- Abstract要約: 一般化可能な人物識別(Re-ID)は、機械学習とコンピュータビジョンにおいて非常にホットな研究トピックである。
従来の手法は主に視覚表現学習に焦点をあてるが、訓練中の意味的特徴の可能性を検討することは無視される。
MMETと呼ばれるマルチモーダル等価変換器を提案し,より堅牢なビジュアル・セマンティックな埋め込み学習を実現する。
- 参考スコア(独自算出の注目度): 11.562980171753162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalizable person re-identification (Re-ID) is a very hot research topic
in machine learning and computer vision, which plays a significant role in
realistic scenarios due to its various applications in public security and
video surveillance. However, previous methods mainly focus on the visual
representation learning, while neglect to explore the potential of semantic
features during training, which easily leads to poor generalization capability
when adapted to the new domain. In this paper, we propose a Multi-Modal
Equivalent Transformer called MMET for more robust visual-semantic embedding
learning on visual, textual and visual-textual tasks respectively. To further
enhance the robust feature learning in the context of transformer, a dynamic
masking mechanism called Masked Multimodal Modeling strategy (MMM) is
introduced to mask both the image patches and the text tokens, which can
jointly works on multimodal or unimodal data and significantly boost the
performance of generalizable person Re-ID. Extensive experiments on benchmark
datasets demonstrate the competitive performance of our method over previous
approaches. We hope this method could advance the research towards
visual-semantic representation learning. Our source code is also publicly
available at https://github.com/JeremyXSC/MMET.
- Abstract(参考訳): 一般個人再識別(Re-ID)は、機械学習とコンピュータビジョンにおいて非常にホットな研究トピックであり、公共のセキュリティやビデオ監視における様々な応用のために、現実的なシナリオにおいて重要な役割を果たす。
しかし,従来の手法は主に視覚的表現学習に重点を置いていたが,学習中の意味的特徴の可能性を探求することは行わず,新しい領域に適応する際の一般化能力の低下につながる。
本稿では,視覚タスク,テキストタスク,視覚タスクにおいてより頑健な視覚意味埋め込み学習を実現するために,mmetと呼ばれるマルチモーダル等価トランスフォーマを提案する。
トランスフォーマタの文脈におけるロバストな特徴学習をさらに強化するため、画像パッチとテキストトークンの両方をマスクするために、マスキングマルチモーダルモデリング戦略(mmm)と呼ばれる動的マスキング機構が導入され、マルチモーダルデータやユニモーダルデータと協調して動作し、一般的なパーソナライズ可能なパーソンリidのパフォーマンスを大幅に向上させる。
ベンチマークデータセットの大規模な実験により,従来の手法に比べて,提案手法の競合性能が示された。
この手法が視覚・視覚表現学習への研究を前進させることを期待する。
ソースコードはhttps://github.com/JeremyXSC/MMETでも公開されています。
関連論文リスト
- Spatio-Temporal Context Prompting for Zero-Shot Action Detection [13.22912547389941]
本稿では,視覚言語モデルの豊富な知識を効果的に活用し,対人インタラクションを実現する手法を提案する。
同時に複数の人物による異なる行動を認識するという課題に対処するために,興味あるトークンスポッティング機構を設計する。
提案手法は,従来の手法に比べて優れた結果を得ることができ,さらにマルチアクションビデオに拡張することができる。
論文 参考訳(メタデータ) (2024-08-28T17:59:05Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
我々は、Draw-and-Understandプロジェクト、新しいモデル、マルチドメインデータセット、ビジュアルプロンプトのための挑戦的なベンチマークを紹介する。
具体的には、視覚エンコーダ、視覚プロンプトエンコーダ、LLMを接続する、エンド・ツー・エンドのマルチモーダル大規模言語モデル(MLLM)を提案する。
MLLMの視覚的プロンプト研究を進めるために,MDVP-DataとMDVP-Benchを紹介する。
論文 参考訳(メタデータ) (2024-03-29T16:26:20Z) - The Power of the Senses: Generalizable Manipulation from Vision and
Touch through Masked Multimodal Learning [60.91637862768949]
強化学習環境における視覚的・触覚的情報を融合するためのマスク付きマルチモーダル学習(M3L)を提案する。
M3Lは、マスク付きオートエンコーディングに基づいて、ポリシーと視覚触覚表現を学習する。
視覚と触覚の両方の観察を行い、3つの模擬環境におけるM3Lの評価を行った。
論文 参考訳(メタデータ) (2023-11-02T01:33:00Z) - Multi-Modal Representation Learning with Text-Driven Soft Masks [48.19806080407593]
自己教師型学習フレームワークにおける視覚言語表現学習手法を提案する。
画像中の領域をソフトメイキングすることで、画像テキストマッチング(ITM)タスクの多様な特徴を生成する。
マルチモーダルエンコーダを用いて単語条件の視覚的注意を計算し,各単語に関連する領域を同定する。
論文 参考訳(メタデータ) (2023-04-03T05:07:49Z) - Vision Learners Meet Web Image-Text Pairs [32.36188289972377]
本研究では,ノイズの多いWebソースと画像テキストのペアデータに対する自己教師付き事前学習について検討する。
マスク付きトレーニング目標を用いたシングルモーダルトレーニングや,画像テキストコンストラシティブトレーニングを用いたマルチモーダルトレーニングなど,さまざまな手法を比較した。
我々は、スケーラブルなWebソース画像テキストデータから学習する新しいビジュアル表現事前学習手法MUlti-modal Generator(MUG)を提案する。
論文 参考訳(メタデータ) (2023-01-17T18:53:24Z) - Seeing What You Miss: Vision-Language Pre-training with Semantic
Completion Learning [22.464424641734652]
クロスモーダルアライメントは視覚言語事前学習モデルに不可欠である。
本研究では,グローバル・ローカル・アライメントを支援するセマンティック・コンプリート学習タスクを提案する。
また、フレキシブル・ビジョン・エンコーダを導入し、画像テキストとビデオテキストのマルチモーダルタスクを同時に実行できるようにした。
論文 参考訳(メタデータ) (2022-11-24T06:39:16Z) - Multi-modal Transformers Excel at Class-agnostic Object Detection [105.10403103027306]
既存の手法では、人間の理解可能な意味論によって支配されるトップダウンの監視信号が欠落していると論じる。
マルチスケール特徴処理と変形可能な自己アテンションを用いた効率よく柔軟なMViTアーキテクチャを開発した。
多様なアプリケーションにおけるMViT提案の重要性を示す。
論文 参考訳(メタデータ) (2021-11-22T18:59:29Z) - Probing Inter-modality: Visual Parsing with Self-Attention for
Vision-Language Pre-training [139.4566371416662]
Vision-Language Pre-Trainingは、画像とテキストのペアからマルチモーダル表現を学ぶことを目的としている。
CNNは、長距離依存をモデル化する際の局所受容野の弱点により、視覚的関係学習に制限がある。
論文 参考訳(メタデータ) (2021-06-25T08:04:25Z) - TVDIM: Enhancing Image Self-Supervised Pretraining via Noisy Text Data [13.68491474904529]
テキスト強化型ビジュアルディープインフォマティクス(TVDIM)を提案する。
自己教師型学習の中核となる考え方は、複数の視点から抽出された特徴間の相互情報の最大化である。
TVDIMは、同じ画像の集合を処理する際に、従来の視覚的自己監督手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-03T12:36:01Z) - Exploit Clues from Views: Self-Supervised and Regularized Learning for
Multiview Object Recognition [66.87417785210772]
本研究では,マルチビュー自己教師型学習(MV-SSL)の問題点について検討する。
対象不変」表現を追求し,自己指導型学習のための新しい代理課題を提案する。
実験の結果,ビュー不変プロトタイプ埋め込み(VISPE)による認識と検索は,他の自己教師あり学習方法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-28T07:06:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。