論文の概要: True Multimodal In-Context Learning Needs Attention to the Visual Context
- arxiv url: http://arxiv.org/abs/2507.15807v2
- Date: Wed, 06 Aug 2025 09:36:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 15:43:09.301323
- Title: True Multimodal In-Context Learning Needs Attention to the Visual Context
- Title(参考訳): 真のマルチモーダルインコンテキスト学習は視覚的コンテキストに注意を必要とする
- Authors: Shuo Chen, Jianzhe Liu, Zhen Han, Yan Xia, Daniel Cremers, Philip Torr, Volker Tresp, Jindong Gu,
- Abstract要約: MLLM(Multimodal Large Language Models)は、新しいタスクに適応したMICL(Multimodal In-Context Learning)を実現する。
現在のMLLMは、視覚的手がかりを無視し、テキストパターンを過度に無視する傾向にあり、真のマルチモーダル適応よりも単なるテキスト模倣に繋がる。
視覚的コンテキストへのモデルへの参加を促す,効率的な微調整戦略であるDynamic Attention Reallocation (DARA)を紹介した。
- 参考スコア(独自算出の注目度): 69.63677595066012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Large Language Models (MLLMs), built on powerful language backbones, have enabled Multimodal In-Context Learning (MICL)-adapting to new tasks from a few multimodal demonstrations consisting of images, questions, and answers. Despite showing noticeable improvement on standard vision-language datasets, current MLLMs struggle to leverage visual information in the demonstrations. Specifically, they tend to neglect visual cues and over-rely on textual patterns, leading to mere text imitation rather than genuine multimodal adaptation. This behavior makes MICL still unimodal and largely restricts its practical utility. More importantly, this limitation is often concealed by the improved performance on tasks that do not require understanding the visual context. As a result, how to effectively enhance MICL ability and reliably evaluate the MICL performance remains underexplored. To address these issues, we first introduce Dynamic Attention Reallocation (DARA), an efficient fine-tuning strategy that encourages models to attend to the visual context by rebalancing attention across visual and textual tokens. In addition, we present TrueMICL, an MICL-dedicated dataset with both support and test sets that explicitly requires the integration of multimodal information-particularly visual content-for correct task completion. Extensive experiments demonstrate the effectiveness of our holistic solution, showcasing substantial improvements in the true multimodal in-context learning capabilities. Code and datasets are available at https://chenxshuo.github.io/true-micl-colm .
- Abstract(参考訳): 強力な言語バックボーン上に構築されたMultimodal Large Language Models (MLLM)は、画像、質問、回答からなるいくつかのマルチモーダルデモから新しいタスクに適応するMultimodal In-Context Learning (MICL)を可能にする。
現在のMLLMは、標準的なビジョン言語データセットが顕著に改善されているにもかかわらず、デモで視覚情報を活用するのに苦労している。
具体的には、視覚的な手がかりを無視し、テクストパターンを過度に無視する傾向があり、真のマルチモーダル適応よりも単なるテキスト模倣に繋がる。
この振る舞いにより、MICLはいまだに非定型であり、実用性を大幅に制限している。
さらに重要なのは、視覚的コンテキストを理解する必要のないタスクのパフォーマンス向上によって、この制限が隠されていることだ。
その結果、MICL性能を効果的に向上し、MICL性能を確実に評価する方法はまだ未検討のままである。
これらの問題に対処するために,我々はまず,視覚的およびテキスト的トークンに注意を移すことによって,モデルが視覚的コンテキストに参画することを奨励する,効率的な微調整戦略であるDynamic Attention Reallocation (DARA)を紹介した。
さらに,多モーダル情報(特に視覚的内容)の統合を明示的に要求する,サポートセットとテストセットの両方を備えたMICL専用データセットであるTrueMICLを提案する。
広範にわたる実験により,本手法の有効性が実証され,真のマルチモーダル・イン・コンテクスト学習能力の大幅な改善が示された。
コードとデータセットはhttps://chenxshuo.github.io/true-micl-colm で公開されている。
関連論文リスト
- Visual RAG: Expanding MLLM visual knowledge without fine-tuning [5.341192792319891]
本稿では、文脈から学習するMLLMの機能と検索機構を相乗的に組み合わせたVisual RAGを紹介する。
このようにして、得られたシステムは、トレーニングデータから抽出した知識に限らず、微調整なしで、迅速かつ容易に更新できる。
モデル画像分類性能を改善するための計算コストを大幅に削減し、トレーニングされていない新しい視覚領域やタスクにモデル知識を拡大する。
論文 参考訳(メタデータ) (2025-01-18T17:43:05Z) - Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment [58.94611347128066]
マルチモーダル大言語モデル(MLLM)は、視覚のきめ細やかな理解に苦しむ。
近年の研究では、ツールの使用や視覚的なタスクを自動回帰フレームワークに統一する手法が開発されており、多くの場合、全体的なマルチモーダルパフォーマンスを犠牲にしている。
本稿では,典型的な視覚的タスクから派生した微分可能なタスク選好を利用する新しい手法であるタスク選好最適化(TPO)を提案する。
論文 参考訳(メタデータ) (2024-12-26T18:56:05Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs [61.56904387052982]
本稿では,マルチコンテキストの視覚的グラウンド化という新しい視覚的グラウンド化タスクを提案する。
オープンなテキストプロンプトに基づいて、複数の画像にまたがる関心のインスタンスをローカライズすることを目的としている。
我々は20以上の最先端MLLMと基盤モデルをベンチマークし、潜在的にマルチコンテキストの視覚的グラウンド化機能を有する。
論文 参考訳(メタデータ) (2024-10-16T07:52:57Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [71.87790090964734]
大規模言語モデル(LLM)は、テキスト理解や埋め込みタスクにおいて、例外的な習熟度を示している。
マルチモーダル表現のポテンシャル、特にアイテムツーイテム(I2I)レコメンデーションについては、未解明のままである。
本稿では,既存のLLMと視覚エンコーダの統合をカスタマイズし,効率的なマルチモーダル表現を実現するエンド・ツー・エンドのファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2024-05-27T03:24:01Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
本稿では,IT-LVLMの基本的なコンピュータビジョンタスクにおける能力を評価するために,スケーラブルなテストベッドを提案する。
MERLIMには300K以上の画像検索ペアが含まれており、IT-LVLMにおけるクロスモーダルな"ハロシン化"イベントの検出に重点を置いている。
論文 参考訳(メタデータ) (2023-12-03T16:39:36Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVAは、MLLMの知覚能力を改善するためにピクセル、地域、グローバル機能を統合する革新的な統合マルチタスクフレームワークである。
この研究は、277Kサンプルからなるマスクベースの新しいマルチタスクデータセットに貢献し、MLLMの微粒化知覚能力に挑戦し評価する。
論文 参考訳(メタデータ) (2023-11-09T13:18:27Z) - MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning [42.68425777473114]
大規模言語モデル(LLM)によって強化された視覚言語モデル(VLM)は、急速に人気が高まっている。
マルチモーダル・インコンテキスト・ラーニング(MMICL)を用いた視覚言語モデルを導入し,VLMがマルチモーダル入力を効率的に処理できるようにする。
実験により,MMICLは多種多様な視覚言語タスクにおいて,最先端のゼロショット性能を実現することを確認した。
論文 参考訳(メタデータ) (2023-09-14T17:59:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。