論文の概要: The Responsibility Problem in Neural Networks with Unordered Targets
- arxiv url: http://arxiv.org/abs/2304.09499v1
- Date: Wed, 19 Apr 2023 08:40:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 15:09:15.768827
- Title: The Responsibility Problem in Neural Networks with Unordered Targets
- Title(参考訳): 非順序目標を持つニューラルネットワークにおける責任問題
- Authors: Ben Hayes, Charalampos Saitis, Gy\"orgy Fazekas
- Abstract要約: 我々は、未順序オブジェクトを固定置換のニューラルネットワーク出力にマッピングする際に生じる不連続性について議論する。
そのようなモデルの下での不連続性は数え切れないほど無限であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We discuss the discontinuities that arise when mapping unordered objects to
neural network outputs of fixed permutation, referred to as the responsibility
problem. Prior work has proved the existence of the issue by identifying a
single discontinuity. Here, we show that discontinuities under such models are
uncountably infinite, motivating further research into neural networks for
unordered data.
- Abstract(参考訳): 我々は、未順序オブジェクトを固定置換のニューラルネットワーク出力にマッピングする際に生じる不連続性(責任問題)について論じる。
以前の研究は、単一の不連続を識別することで問題の存在を証明した。
ここでは,そのようなモデルの下での不連続性は不可分無限であり,非順序データに対するニューラルネットワークの研究が促進されることを示した。
関連論文リスト
- Efficient compilation of expressive problem space specifications to
neural network solvers [0.0]
前者を後者にコンパイルするアルゴリズムについて述べる。
我々は、標準のSMTソルバとは対照的に、ニューラルネットワークソルバをターゲットにして発生する複雑さを探索し、克服する。
論文 参考訳(メタデータ) (2024-01-24T09:13:09Z) - Energy Regularized RNNs for Solving Non-Stationary Bandit Problems [97.72614340294547]
我々は、ニューラルネットワークが特定の行動を支持するのに自信過剰になるのを防ぐエネルギー用語を提案する。
提案手法は,ロッティングバンドのサブプロブレムを解く方法と同じくらい有効であることを示す。
論文 参考訳(メタデータ) (2023-03-12T03:32:43Z) - Zonotope Domains for Lagrangian Neural Network Verification [102.13346781220383]
我々は、ディープニューラルネットワークを多くの2層ニューラルネットワークの検証に分解する。
我々の手法は線形プログラミングとラグランジアンに基づく検証技術の両方により改善された境界を与える。
論文 参考訳(メタデータ) (2022-10-14T19:31:39Z) - Consistency of Neural Networks with Regularization [0.0]
本稿では,ニューラルネットワークの規則化による一般的な枠組みを提案し,その一貫性を実証する。
双曲関数(Tanh)と整形線形単位(ReLU)の2種類の活性化関数が検討されている。
論文 参考訳(メタデータ) (2022-06-22T23:33:39Z) - Learning and Generalization in RNNs [11.107204912245841]
単純なリカレントニューラルネットワークがシーケンスの関数を学習できることを実証する。
新しいアイデアは、我々の証明でRNNの隠れた状態から情報を抽出することを可能にする。
論文 参考訳(メタデータ) (2021-05-31T18:27:51Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z) - Thinking Deeply with Recurrence: Generalizing from Easy to Hard
Sequential Reasoning Problems [51.132938969015825]
我々は、リカレントネットワークは、非リカレントディープモデルの振る舞いを詳細にエミュレートする能力を有することを観察する。
再帰ステップの少ない単純な迷路を解くように訓練された再帰ネットワークは、推論中に追加の繰り返しを実行するだけで、より複雑な問題を解決することができる。
論文 参考訳(メタデータ) (2021-02-22T14:09:20Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - Problems of representation of electrocardiograms in convolutional neural
networks [58.720142291102135]
これらの問題は本質的に体系的であることを示す。
これらは、畳み込みネットワークが複合オブジェクトでどのように機能するかに起因するが、その一部は厳格に固定されていないが、大きな移動性を持っている。
論文 参考訳(メタデータ) (2020-12-01T14:02:06Z) - Banach Space Representer Theorems for Neural Networks and Ridge Splines [17.12783792226575]
データに適合するニューラルネットワークで学習した関数の性質を理解するための変分フレームワークを開発する。
有限幅単層ニューラルネットワークが逆問題に対する解であることを示す代表者定理を導出する。
論文 参考訳(メタデータ) (2020-06-10T02:57:37Z) - Deep Neural Networks with Trainable Activations and Controlled Lipschitz
Constant [26.22495169129119]
本稿では,深層ニューラルネットワークの活性化関数を学習するための変分フレームワークを提案する。
我々の目的は、リプシッツ定数の上界を制御しながら、ネットワークの容量を増加させることである。
提案手法を標準ReLUネットワークとその変種であるPRELUとLeakyReLUと比較する。
論文 参考訳(メタデータ) (2020-01-17T12:32:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。