End-to-End Policy Gradient Method for POMDPs and Explainable Agents
- URL: http://arxiv.org/abs/2304.09769v1
- Date: Wed, 19 Apr 2023 15:45:52 GMT
- Title: End-to-End Policy Gradient Method for POMDPs and Explainable Agents
- Authors: Soichiro Nishimori, Sotetsu Koyamada and Shin Ishii
- Abstract summary: We propose an RL algorithm that estimates the hidden states by end-to-end training, and visualize the estimation as a state-transition graph.
Experimental results demonstrated that the proposed algorithm can solve simple POMDP problems and that the visualization makes the agent's behavior interpretable to humans.
- Score: 2.1700203922407493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world decision-making problems are often partially observable, and many
can be formulated as a Partially Observable Markov Decision Process (POMDP).
When we apply reinforcement learning (RL) algorithms to the POMDP, reasonable
estimation of the hidden states can help solve the problems. Furthermore,
explainable decision-making is preferable, considering their application to
real-world tasks such as autonomous driving cars. We proposed an RL algorithm
that estimates the hidden states by end-to-end training, and visualize the
estimation as a state-transition graph. Experimental results demonstrated that
the proposed algorithm can solve simple POMDP problems and that the
visualization makes the agent's behavior interpretable to humans.
Related papers
- Towards Cost Sensitive Decision Making [14.279123976398926]
In this work, we consider RL models that may actively acquire features from the environment to improve the decision quality and certainty.
We propose the Active-Acquisition POMDP and identify two types of the acquisition process for different application domains.
In order to assist the agent in the actively-acquired partially-observed environment and alleviate the exploration-exploitation dilemma, we develop a model-based approach.
arXiv Detail & Related papers (2024-10-04T19:48:23Z) - Online POMDP Planning with Anytime Deterministic Guarantees [11.157761902108692]
Planning under uncertainty can be mathematically formalized using partially observable Markov decision processes (POMDPs)
Finding an optimal plan for POMDPs can be computationally expensive and is feasible only for small tasks.
We derive a deterministic relationship between a simplified solution that is easier to obtain and the theoretically optimal one.
arXiv Detail & Related papers (2023-10-03T04:40:38Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Reinforcement Learning with a Terminator [80.34572413850186]
We learn the parameters of the TerMDP and leverage the structure of the estimation problem to provide state-wise confidence bounds.
We use these to construct a provably-efficient algorithm, which accounts for termination, and bound its regret.
arXiv Detail & Related papers (2022-05-30T18:40:28Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Identification of Unexpected Decisions in Partially Observable
Monte-Carlo Planning: a Rule-Based Approach [78.05638156687343]
We propose a methodology for analyzing POMCP policies by inspecting their traces.
The proposed method explores local properties of policy behavior to identify unexpected decisions.
We evaluate our approach on Tiger, a standard benchmark for POMDPs, and a real-world problem related to mobile robot navigation.
arXiv Detail & Related papers (2020-12-23T15:09:28Z) - Stein Variational Model Predictive Control [130.60527864489168]
Decision making under uncertainty is critical to real-world, autonomous systems.
Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex distributions.
We show that this framework leads to successful planning in challenging, non optimal control problems.
arXiv Detail & Related papers (2020-11-15T22:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.