論文の概要: FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing
- arxiv url: http://arxiv.org/abs/2304.09831v1
- Date: Wed, 19 Apr 2023 17:33:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-04-20 13:28:08.741819
- Title: FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing
- Title(参考訳): FastRLAP:Deep RLと自動運転による高速運転学習システム
- Authors: Kyle Stachowicz, Dhruv Shah, Arjun Bhorkar, Ilya Kostrikov, Sergey
Levine
- Abstract要約: 本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
- 参考スコア(独自算出の注目度): 71.76084256567599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a system that enables an autonomous small-scale RC car to drive
aggressively from visual observations using reinforcement learning (RL). Our
system, FastRLAP (faster lap), trains autonomously in the real world, without
human interventions, and without requiring any simulation or expert
demonstrations. Our system integrates a number of important components to make
this possible: we initialize the representations for the RL policy and value
function from a large prior dataset of other robots navigating in other
environments (at low speed), which provides a navigation-relevant
representation. From here, a sample-efficient online RL method uses a single
low-speed user-provided demonstration to determine the desired driving course,
extracts a set of navigational checkpoints, and autonomously practices driving
through these checkpoints, resetting automatically on collision or failure.
Perhaps surprisingly, we find that with appropriate initialization and choice
of algorithm, our system can learn to drive over a variety of racing courses
with less than 20 minutes of online training. The resulting policies exhibit
emergent aggressive driving skills, such as timing braking and acceleration
around turns and avoiding areas which impede the robot's motion, approaching
the performance of a human driver using a similar first-person interface over
the course of training.
- Abstract(参考訳): 本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAPは、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
我々は,RLポリシーと値関数の表現を,他の環境(低速で)をナビゲートする他のロボットの大きなデータセットから初期化し,ナビゲーション関連表現を提供する。
サンプル効率の高いオンラインRL法では,所望の走行経路を決定するために,低速ユーザが提供する1つのデモを使用して,一連のナビゲーションチェックポイントを抽出し,これらのチェックポイントを自律的に走行し,衝突や故障時に自動的にリセットする。
意外なことに、アルゴリズムの適切な初期化と選択によって、私たちのシステムは、オンライントレーニングを20分未満で、さまざまなレースコースを走らせることができる。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
関連論文リスト
- Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Avoidance Navigation Based on Offline Pre-Training Reinforcement
Learning [0.0]
本稿では,移動ロボットの地図を使わずに回避ナビゲーションを行うための,事前学習型深部強化学習(DRL)を提案する。
早期の非効率なランダム探索を高速化するために,効率的なオフライン学習戦略を提案する。
DRLモデルは, 異なる環境下で普遍的な汎用能力を有することを示した。
論文 参考訳(メタデータ) (2023-08-03T06:19:46Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
本研究は,学習エージェントの成功に対する異なるトレーニングベンチマーク設計の影響を分析した最初の実証的研究である。
複数ステップのルックアヘッドで計画を行うRLベースの駆動エージェントであるtrajectory value learning (TRAVL)を提案する。
実験の結果,TRAVLはすべてのベースラインと比較してより速く学習でき,安全な操作が可能であることがわかった。
論文 参考訳(メタデータ) (2023-06-27T17:58:39Z) - Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers [0.4241054493737716]
本研究では、DQN(Deep Q-networks)とTRPO(Trust Region Policy Optimization)の2つのDRLアルゴリズムの実装、評価、比較を行う。
設計されたComplexRoads環境で訓練されたモデルは、他の運転操作にうまく適応でき、全体的な性能が期待できる。
論文 参考訳(メタデータ) (2023-06-20T11:41:01Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
深層模倣強化学習(DIRL)は、視覚入力を使用してアジャイルな自律レースを実現する。
我々は,高忠実性運転シミュレーションと実世界の1/20スケールRC-car上での車載計算の制限により,本アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2021-07-18T00:00:48Z) - Learning to drive from a world on rails [78.28647825246472]
モデルベースアプローチによって,事前記録された運転ログからインタラクティブな視覚ベースの運転方針を学習する。
世界の前方モデルは、あらゆる潜在的な運転経路の結果を予測する運転政策を監督する。
提案手法は,carla リーダボードにまずランク付けし,40 倍少ないデータを用いて25%高い運転スコアを得た。
論文 参考訳(メタデータ) (2021-05-03T05:55:30Z) - Formula RL: Deep Reinforcement Learning for Autonomous Racing using
Telemetry Data [4.042350304426975]
この問題を,車両のテレメトリと連続的な動作空間からなる多次元入力を用いて強化学習タスクとして構成する。
我々は,2つの実験において,Deep Deterministic Policy gradient (DDPG) の10変種をレースに投入した。
研究によると、rlでトレーニングされたモデルは、オープンソースの手作りロボットよりも高速に運転できるだけでなく、未知のトラックに一般化できる。
論文 参考訳(メタデータ) (2021-04-22T14:40:12Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
提案手法は,従来の実演データとオンライン体験を組み合わせることで,スキルの素早い学習を可能にする。
以上の結果から,事前データを組み込むことで,ロボット工学を実践的な時間スケールまで学習するのに要する時間を短縮できることが示唆された。
論文 参考訳(メタデータ) (2020-06-16T17:54:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。