論文の概要: Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers
- arxiv url: http://arxiv.org/abs/2306.11466v2
- Date: Fri, 18 Aug 2023 05:58:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 23:13:48.274100
- Title: Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers
- Title(参考訳): 各種シミュレート運転における自動運転のための深層強化学習の総合的訓練と評価
- Authors: Yongqi Dong, Tobias Datema, Vincent Wassenaar, Joris van de Weg, Cahit
Tolga Kopar, and Harim Suleman
- Abstract要約: 本研究では、DQN(Deep Q-networks)とTRPO(Trust Region Policy Optimization)の2つのDRLアルゴリズムの実装、評価、比較を行う。
設計されたComplexRoads環境で訓練されたモデルは、他の運転操作にうまく適応でき、全体的な性能が期待できる。
- 参考スコア(独自算出の注目度): 0.4241054493737716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing and testing automated driving models in the real world might be
challenging and even dangerous, while simulation can help with this, especially
for challenging maneuvers. Deep reinforcement learning (DRL) has the potential
to tackle complex decision-making and controlling tasks through learning and
interacting with the environment, thus it is suitable for developing automated
driving while not being explored in detail yet. This study carried out a
comprehensive study by implementing, evaluating, and comparing the two DRL
algorithms, Deep Q-networks (DQN) and Trust Region Policy Optimization (TRPO),
for training automated driving on the highway-env simulation platform.
Effective and customized reward functions were developed and the implemented
algorithms were evaluated in terms of onlane accuracy (how well the car drives
on the road within the lane), efficiency (how fast the car drives), safety (how
likely the car is to crash into obstacles), and comfort (how much the car makes
jerks, e.g., suddenly accelerates or brakes). Results show that the TRPO-based
models with modified reward functions delivered the best performance in most
cases. Furthermore, to train a uniform driving model that can tackle various
driving maneuvers besides the specific ones, this study expanded the
highway-env and developed an extra customized training environment, namely,
ComplexRoads, integrating various driving maneuvers and multiple road scenarios
together. Models trained on the designed ComplexRoads environment can adapt
well to other driving maneuvers with promising overall performance. Lastly,
several functionalities were added to the highway-env to implement this work.
The codes are open on GitHub at https://github.com/alaineman/drlcarsim-paper.
- Abstract(参考訳): 自動運転車を現実世界で開発してテストすることは、難しいし、危険かもしれない。
深層強化学習(DRL)は、複雑な意思決定やタスクの制御に学習と環境との相互作用を通じて取り組む可能性があり、まだ詳細は明らかにされていないが、自動走行の開発に適している。
本研究では,高速道路環境シミュレーションプラットフォーム上での自動走行の訓練を行うために,DQN(Deep Q-networks)とTRPO(Trust Region Policy Optimization)の2つのDRLアルゴリズムの実装,評価,比較を行った。
有効でカスタマイズされた報酬関数が開発され、実装されたアルゴリズムはオンレーンの精度(車線内の道路の走行速度)、効率性(車の走行速度)、安全性(車が障害物に衝突する確率)、快適性(例えば、車が突然加速またはブレーキする速度)で評価された。
その結果,修正報酬機能を備えたtrpoモデルが最も優れた性能を得られた。
さらに,特定道路以外の運転操作に対処可能な一様運転モデルの訓練を行うため,道路環境を拡大し,複合道路,各種運転操作と複数の道路シナリオを一体化して,さらにカスタマイズした訓練環境を構築した。
設計されたComplexRoads環境で訓練されたモデルは、他の運転操作にうまく適応でき、全体的な性能が期待できる。
最後に、この作業を実施するためにいくつかの機能が追加された。
コードはgithubのhttps://github.com/alaineman/drlcarsim-paperで公開されている。
関連論文リスト
- Self-Driving Car Racing: Application of Deep Reinforcement Learning [0.0]
このプロジェクトの目的は、OpenAI Gymnasium CarRacing環境でシミュレーションカーを効率的に駆動するAIエージェントを開発することである。
本稿では,DQN(Deep Q-Network)やPPO(Proximal Policy Optimization)などのRLアルゴリズムや,トランスファーラーニングとリカレントニューラルネットワーク(RNN)を組み込んだ新たな適応手法について検討する。
論文 参考訳(メタデータ) (2024-10-30T07:32:25Z) - DRNet: A Decision-Making Method for Autonomous Lane Changingwith Deep
Reinforcement Learning [7.2282857478457805]
DRNetは、DRLエージェントがシミュレートされた高速道路上で合理的な車線変更を行うことで、運転を学べる新しいDRLベースのフレームワークである。
我々のDRLエージェントは、衝突を起こさずに所望のタスクを学習でき、DDQNや他のベースラインモデルより優れています。
論文 参考訳(メタデータ) (2023-11-02T21:17:52Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
本研究は,学習エージェントの成功に対する異なるトレーニングベンチマーク設計の影響を分析した最初の実証的研究である。
複数ステップのルックアヘッドで計画を行うRLベースの駆動エージェントであるtrajectory value learning (TRAVL)を提案する。
実験の結果,TRAVLはすべてのベースラインと比較してより速く学習でき,安全な操作が可能であることがわかった。
論文 参考訳(メタデータ) (2023-06-27T17:58:39Z) - Safe, Efficient, Comfort, and Energy-saving Automated Driving through
Roundabout Based on Deep Reinforcement Learning [3.4602940992970903]
ラウンドアバウンドでの交通シナリオは、自動化された運転に相当な複雑さをもたらす。
本研究は、ラウンドアバウンドを走行する自動運転車の運転を指示する様々なDRLアルゴリズムを探索し、採用し、実装する。
3つの試験されたDRLアルゴリズムはいずれも、自動運転車がラウンドアバウンドを走行できるようにするのに成功している。
論文 参考訳(メタデータ) (2023-06-20T11:39:55Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
深層模倣強化学習(DIRL)は、視覚入力を使用してアジャイルな自律レースを実現する。
我々は,高忠実性運転シミュレーションと実世界の1/20スケールRC-car上での車載計算の制限により,本アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2021-07-18T00:00:48Z) - Investigating Value of Curriculum Reinforcement Learning in Autonomous
Driving Under Diverse Road and Weather Conditions [0.0]
本稿では,自動運転アプリケーションにおけるカリキュラム強化学習の価値を検討する。
道路の複雑さや気象条件の異なる現実的な運転シミュレータで、複数の異なる運転シナリオを設定しました。
その結果、カリキュラムRLは、運転性能とサンプルの複雑さの両方の観点から、複雑な運転タスクで有意な利益を得ることができます。
論文 参考訳(メタデータ) (2021-03-14T12:05:05Z) - Intelligent Roundabout Insertion using Deep Reinforcement Learning [68.8204255655161]
本稿では,多忙なラウンドアバウンドの入場を交渉できる演習計画モジュールを提案する。
提案されたモジュールは、トレーニングされたニューラルネットワークに基づいて、操作の全期間にわたって、ラウンドアバウンドに入るタイミングと方法を予測する。
論文 参考訳(メタデータ) (2020-01-03T11:16:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。