A Robust and Interpretable Deep Learning Framework for Multi-modal
Registration via Keypoints
- URL: http://arxiv.org/abs/2304.09941v2
- Date: Thu, 31 Aug 2023 21:06:46 GMT
- Title: A Robust and Interpretable Deep Learning Framework for Multi-modal
Registration via Keypoints
- Authors: Alan Q. Wang, Evan M. Yu, Adrian V. Dalca, Mert R. Sabuncu
- Abstract summary: We present KeyMorph, a deep learning-based image registration framework.
KeyMorph relies on automatically detecting corresponding keypoints.
We show registration accuracy that surpasses current state-of-the-art methods.
- Score: 10.913822141584795
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We present KeyMorph, a deep learning-based image registration framework that
relies on automatically detecting corresponding keypoints. State-of-the-art
deep learning methods for registration often are not robust to large
misalignments, are not interpretable, and do not incorporate the symmetries of
the problem. In addition, most models produce only a single prediction at
test-time. Our core insight which addresses these shortcomings is that
corresponding keypoints between images can be used to obtain the optimal
transformation via a differentiable closed-form expression. We use this
observation to drive the end-to-end learning of keypoints tailored for the
registration task, and without knowledge of ground-truth keypoints. This
framework not only leads to substantially more robust registration but also
yields better interpretability, since the keypoints reveal which parts of the
image are driving the final alignment. Moreover, KeyMorph can be designed to be
equivariant under image translations and/or symmetric with respect to the input
image ordering. Finally, we show how multiple deformation fields can be
computed efficiently and in closed-form at test time corresponding to different
transformation variants. We demonstrate the proposed framework in solving 3D
affine and spline-based registration of multi-modal brain MRI scans. In
particular, we show registration accuracy that surpasses current
state-of-the-art methods, especially in the context of large displacements. Our
code is available at https://github.com/alanqrwang/keymorph.
Related papers
- MsMorph: An Unsupervised pyramid learning network for brain image registration [4.000367245594772]
MsMorph is an image registration framework aimed at mimicking the manual process of registering image pairs.
It decodes semantic information at different scales and continuously compen-sates for the predicted deformation field.
The proposed method simulates the manual approach to registration, focusing on different regions of the image pairs and their neighborhoods.
arXiv Detail & Related papers (2024-10-23T19:20:57Z) - Match me if you can: Semi-Supervised Semantic Correspondence Learning with Unpaired Images [76.47980643420375]
This paper builds on the hypothesis that there is an inherent data-hungry matter in learning semantic correspondences.
We demonstrate a simple machine annotator reliably enriches paired key points via machine supervision.
Our models surpass current state-of-the-art models on semantic correspondence learning benchmarks like SPair-71k, PF-PASCAL, and PF-WILLOW.
arXiv Detail & Related papers (2023-11-30T13:22:15Z) - With a Little Help from your own Past: Prototypical Memory Networks for
Image Captioning [47.96387857237473]
We devise a network which can perform attention over activations obtained while processing other training samples.
Our memory models the distribution of past keys and values through the definition of prototype vectors.
We demonstrate that our proposal can increase the performance of an encoder-decoder Transformer by 3.7 CIDEr points both when training in cross-entropy only and when fine-tuning with self-critical sequence training.
arXiv Detail & Related papers (2023-08-23T18:53:00Z) - Learning Feature Matching via Matchable Keypoint-Assisted Graph Neural
Network [52.29330138835208]
Accurately matching local features between a pair of images is a challenging computer vision task.
Previous studies typically use attention based graph neural networks (GNNs) with fully-connected graphs over keypoints within/across images.
We propose MaKeGNN, a sparse attention-based GNN architecture which bypasses non-repeatable keypoints and leverages matchable ones to guide message passing.
arXiv Detail & Related papers (2023-07-04T02:50:44Z) - Breaking Modality Disparity: Harmonized Representation for Infrared and
Visible Image Registration [66.33746403815283]
We propose a scene-adaptive infrared and visible image registration.
We employ homography to simulate the deformation between different planes.
We propose the first ground truth available misaligned infrared and visible image dataset.
arXiv Detail & Related papers (2023-04-12T06:49:56Z) - Anatomy-aware and acquisition-agnostic joint registration with SynthMorph [6.017634371712142]
Affine image registration is a cornerstone of medical image analysis.
Deep-learning (DL) methods learn a function that maps an image pair to an output transform.
Most affine methods are agnostic to the anatomy the user wishes to align, meaning the registration will be inaccurate if algorithms consider all structures in the image.
We address these shortcomings with SynthMorph, a fast, symmetric, diffeomorphic, and easy-to-use DL tool for joint affine-deformable registration of any brain image.
arXiv Detail & Related papers (2023-01-26T18:59:33Z) - Non-iterative Coarse-to-fine Registration based on Single-pass Deep
Cumulative Learning [11.795108660250843]
We propose a Non-Iterative Coarse-to-finE registration network (NICE-Net) for deformable image registration.
NICE-Net can outperform state-of-the-art iterative deep registration methods while only requiring similar runtime to non-iterative methods.
arXiv Detail & Related papers (2022-06-25T08:34:59Z) - Self-Supervised Equivariant Learning for Oriented Keypoint Detection [35.94215211409985]
We introduce a self-supervised learning framework using rotation-equivariant CNNs to learn to detect robust oriented keypoints.
We propose a dense orientation alignment loss by an image pair generated by synthetic transformations for training a histogram-based orientation map.
Our method outperforms the previous methods on an image matching benchmark and a camera pose estimation benchmark.
arXiv Detail & Related papers (2022-04-19T02:26:07Z) - A Learning Framework for Diffeomorphic Image Registration based on
Quasi-conformal Geometry [1.2891210250935146]
We propose the quasi-conformal registration network (QCRegNet), an unsupervised learning framework, to obtain diffeomorphic 2D image registrations.
QCRegNet consists of the estimator network and the Beltrami solver network (BSNet)
Results show that the registration accuracy is comparable to state-of-the-art methods and diffeomorphism is to a great extent guaranteed.
arXiv Detail & Related papers (2021-10-20T14:23:24Z) - Shape My Face: Registering 3D Face Scans by Surface-to-Surface
Translation [75.59415852802958]
Shape-My-Face (SMF) is a powerful encoder-decoder architecture based on an improved point cloud encoder, a novel visual attention mechanism, graph convolutional decoders with skip connections, and a specialized mouth model.
Our model provides topologically-sound meshes with minimal supervision, offers faster training time, has orders of magnitude fewer trainable parameters, is more robust to noise, and can generalize to previously unseen datasets.
arXiv Detail & Related papers (2020-12-16T20:02:36Z) - Recurrent Multi-view Alignment Network for Unsupervised Surface
Registration [79.72086524370819]
Learning non-rigid registration in an end-to-end manner is challenging due to the inherent high degrees of freedom and the lack of labeled training data.
We propose to represent the non-rigid transformation with a point-wise combination of several rigid transformations.
We also introduce a differentiable loss function that measures the 3D shape similarity on the projected multi-view 2D depth images.
arXiv Detail & Related papers (2020-11-24T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.