Anatomy-aware and acquisition-agnostic joint registration with SynthMorph
- URL: http://arxiv.org/abs/2301.11329v4
- Date: Thu, 11 Jul 2024 17:59:50 GMT
- Title: Anatomy-aware and acquisition-agnostic joint registration with SynthMorph
- Authors: Malte Hoffmann, Andrew Hoopes, Douglas N. Greve, Bruce Fischl, Adrian V. Dalca,
- Abstract summary: Affine image registration is a cornerstone of medical image analysis.
Deep-learning (DL) methods learn a function that maps an image pair to an output transform.
Most affine methods are agnostic to the anatomy the user wishes to align, meaning the registration will be inaccurate if algorithms consider all structures in the image.
We address these shortcomings with SynthMorph, a fast, symmetric, diffeomorphic, and easy-to-use DL tool for joint affine-deformable registration of any brain image.
- Score: 6.017634371712142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Affine image registration is a cornerstone of medical image analysis. While classical algorithms can achieve excellent accuracy, they solve a time-consuming optimization for every image pair. Deep-learning (DL) methods learn a function that maps an image pair to an output transform. Evaluating the function is fast, but capturing large transforms can be challenging, and networks tend to struggle if a test-image characteristic shifts from the training domain, such as resolution. Most affine methods are agnostic to the anatomy the user wishes to align, meaning the registration will be inaccurate if algorithms consider all structures in the image. We address these shortcomings with SynthMorph, a fast, symmetric, diffeomorphic, and easy-to-use DL tool for joint affine-deformable registration of any brain image without preprocessing. First, we leverage a strategy that trains networks with widely varying images synthesized from label maps, yielding robust performance for image types unseen at training. Second, we optimize the spatial overlap of select anatomical labels. This enables networks to distinguish anatomy of interest from irrelevant structures, removing the need for preprocessing that excludes content that may impinge on anatomy-specific registration. Third, we combine the affine model with a deformable hypernetwork that lets users choose the optimal deformation-field regularity for their specific data, at registration time, in a fraction of the time required by classical methods. We analyze how competing architectures learn affine transforms and compare state-of-the-art registration tools across an extremely diverse set of neuroimaging data, aiming to truly capture the behavior of methods in the real world. SynthMorph demonstrates high accuracy and is available at https://w3id.org/synthmorph, as a single complete end-to-end solution for registration of brain MRI.
Related papers
- MsMorph: An Unsupervised pyramid learning network for brain image registration [4.000367245594772]
MsMorph is an image registration framework aimed at mimicking the manual process of registering image pairs.
It decodes semantic information at different scales and continuously compen-sates for the predicted deformation field.
The proposed method simulates the manual approach to registration, focusing on different regions of the image pairs and their neighborhoods.
arXiv Detail & Related papers (2024-10-23T19:20:57Z) - Progressive Retinal Image Registration via Global and Local Deformable Transformations [49.032894312826244]
We propose a hybrid registration framework called HybridRetina.
We use a keypoint detector and a deformation network called GAMorph to estimate the global transformation and local deformable transformation.
Experiments on two widely-used datasets, FIRE and FLoRI21, show that our proposed HybridRetina significantly outperforms some state-of-the-art methods.
arXiv Detail & Related papers (2024-09-02T08:43:50Z) - SAME++: A Self-supervised Anatomical eMbeddings Enhanced medical image
registration framework using stable sampling and regularized transformation [19.683682147655496]
In this work, we introduce a fast and accurate method for unsupervised 3D medical image registration building on top of a Self-supervised Anatomical eMbedding algorithm.
We name our approach SAM-Enhanced registration (SAME++), which decomposes image registration into four steps: affine transformation, coarse deformation, deep non-parametric transformation, and instance optimization.
As a complete registration framework, SAME++ markedly outperforms leading methods by $4.2%$ - $8.2%$ in terms of Dice score.
arXiv Detail & Related papers (2023-11-25T10:11:04Z) - Multi-scale Transformer Network with Edge-aware Pre-training for
Cross-Modality MR Image Synthesis [52.41439725865149]
Cross-modality magnetic resonance (MR) image synthesis can be used to generate missing modalities from given ones.
Existing (supervised learning) methods often require a large number of paired multi-modal data to train an effective synthesis model.
We propose a Multi-scale Transformer Network (MT-Net) with edge-aware pre-training for cross-modality MR image synthesis.
arXiv Detail & Related papers (2022-12-02T11:40:40Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Non-iterative Coarse-to-fine Registration based on Single-pass Deep
Cumulative Learning [11.795108660250843]
We propose a Non-Iterative Coarse-to-finE registration network (NICE-Net) for deformable image registration.
NICE-Net can outperform state-of-the-art iterative deep registration methods while only requiring similar runtime to non-iterative methods.
arXiv Detail & Related papers (2022-06-25T08:34:59Z) - Deformable Image Registration using Neural ODEs [15.245085400790002]
We present a generic, fast, and accurate diffeomorphic image registration framework that leverages neural ordinary differential equations (NODEs)
Compared with traditional optimization-based methods, our framework reduces the running time from tens of minutes to tens of seconds.
Our experiments show that the registration results of our method outperform state-of-the-arts under various metrics.
arXiv Detail & Related papers (2021-08-07T12:54:17Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - SynthMorph: learning contrast-invariant registration without acquired
images [8.0963891430422]
We introduce a strategy for learning image registration without acquired imaging data.
We show that this strategy enables robust and accurate registration of arbitrary MRI contrasts.
arXiv Detail & Related papers (2020-04-21T20:29:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.