論文の概要: Learning policies for resource allocation in business processes
- arxiv url: http://arxiv.org/abs/2304.09970v3
- Date: Mon, 18 Nov 2024 15:05:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:34:02.045585
- Title: Learning policies for resource allocation in business processes
- Title(参考訳): ビジネスプロセスにおける資源配分の学習方針
- Authors: J. Middelhuis, R. Lo Bianco, E. Scherzer, Z. A. Bukhsh, I. J. B. F. Adan, R. M. Dijkman,
- Abstract要約: 本稿では,ビジネスプロセスにおける資源配分のための2つの学習手法を提案する。
最初の方法は、リソースをアクティビティに割り当てることでポリシーを学ぶために、Deep Reinforcement Learning (DRL)を活用する。
第2の方法はスコアベースの値関数近似手法であり、リソース割り当ての優先順位付けのためにキュレートされた特徴の集合の重みを学習する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Efficient allocation of resources to activities is pivotal in executing business processes but remains challenging. While resource allocation methodologies are well-established in domains like manufacturing, their application within business process management remains limited. Existing methods often do not scale well to large processes with numerous activities or optimize across multiple cases. This paper aims to address this gap by proposing two learning-based methods for resource allocation in business processes to minimize the average cycle time of cases. The first method leverages Deep Reinforcement Learning (DRL) to learn policies by allocating resources to activities. The second method is a score-based value function approximation approach, which learns the weights of a set of curated features to prioritize resource assignments. We evaluated the proposed approaches on six distinct business processes with archetypal process flows, referred to as scenarios, and three realistically sized business processes, referred to as composite business processes, which are a combination of the scenarios. We benchmarked our methods against traditional heuristics and existing resource allocation methods. The results show that our methods learn adaptive resource allocation policies that outperform or are competitive with the benchmarks in five out of six scenarios. The DRL approach outperforms all benchmarks in all three composite business processes and finds a policy that is, on average, 12.7% better than the best-performing benchmark.
- Abstract(参考訳): アクティビティへのリソースの効率的な割り当ては、ビジネスプロセスの実行において重要であるが、依然として困難である。
資源割り当ての方法論は製造業のような分野において確立されているが、ビジネスプロセス管理におけるその応用は依然として限られている。
既存のメソッドは、多数のアクティビティを持つ大規模なプロセスや、複数のケースにまたがる最適化に適さないことが多い。
本稿では,ケースの平均サイクル時間を最小化するために,ビジネスプロセスにリソース割り当てを行う2つの学習手法を提案することにより,このギャップを解決することを目的とする。
最初の方法は、リソースをアクティビティに割り当てることでポリシーを学ぶために、Deep Reinforcement Learning (DRL)を活用する。
第2の方法はスコアベースの値関数近似手法であり、リソース割り当ての優先順位付けのためにキュレートされた特徴の集合の重みを学習する。
提案手法は,従来のプロセスフローをシナリオと呼ぶ6つの異なるビジネスプロセスと,シナリオの組み合わせである複合ビジネスプロセスと呼ばれる3つの現実的なサイズのビジネスプロセスについて評価した。
従来のヒューリスティックスや既存のリソース割り当て手法に対して,我々の手法をベンチマークした。
その結果,提案手法は,6つのシナリオのうち5つのシナリオにおいて,ベンチマークを上回る,あるいは競争力のあるアダプティブリソース割り当てポリシーを学習していることがわかった。
DRLアプローチは3つの複合ビジネスプロセスすべてにおいてすべてのベンチマークを上回り、平均して、最高のパフォーマンスベンチマークよりも12.7%良いポリシーを見つける。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Multi-Output Distributional Fairness via Post-Processing [47.94071156898198]
本稿では,タスクに依存しない公平度尺度である分散パリティを高めるために,マルチ出力モデルに対する後処理手法を提案する。
提案手法では, モデル出力を実験的なワッサーシュタインバリセンタへ移動させるため, 最適トランスポートマッピングを用いる。
論文 参考訳(メタデータ) (2024-08-31T22:41:26Z) - On Speeding Up Language Model Evaluation [48.51924035873411]
LLM(Large Language Models)を用いたプロンプトベースの手法の開発には、多くの意思決定が必要である。
この課題に対処するための新しい手法を提案する。
典型的に必要とされるリソースの5~15%しか必要とせず,トップパフォーマンスの手法を識別できることが示される。
論文 参考訳(メタデータ) (2024-07-08T17:48:42Z) - Recommending the optimal policy by learning to act from temporal data [2.554326189662943]
本稿では,Reinforcement (RL) を用いて学習するAIベースのアプローチを提案する。
このアプローチは、実データと合成データセットに基づいて検証され、非政治的なDeep RLアプローチと比較される。
我々のアプローチがDeep RLアプローチと比較し、しばしば克服する能力は、時間的実行データしか利用できないシナリオにおいて、ホワイトボックスのRLテクニックの活用に寄与する。
論文 参考訳(メタデータ) (2023-03-16T10:30:36Z) - A Novel Approach for Auto-Formulation of Optimization Problems [66.94228200699997]
Natural Language for Optimization (NL4Opt) NeurIPS 2022コンペティションでは、最適化ソルバのアクセシビリティとユーザビリティの改善に重点を置いている。
本稿では,チームのソリューションについて述べる。
提案手法は,サブタスク1のF1スコアとサブタスク2の0.867の精度を達成し,それぞれ第4位,第3位を獲得した。
論文 参考訳(メタデータ) (2023-02-09T13:57:06Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
我々は,タスクと現在の知識を考慮に入れながら,探索を計画できる手法を開発した。
本手法は, 探索基準値よりも2倍少ないサンプルで, 強いポリシーを学習できることを実証する。
論文 参考訳(メタデータ) (2022-10-06T20:28:55Z) - Distributional Reinforcement Learning for Scheduling of (Bio)chemical
Production Processes [0.0]
強化学習(Reinforcement Learning, RL)は、最近、プロセスシステム工学と制御コミュニティから大きな注目を集めている。
本稿では,生産スケジューリング問題に共通して課される優先的制約と解離的制約に対処するRL手法を提案する。
論文 参考訳(メタデータ) (2022-03-01T17:25:40Z) - Math Programming based Reinforcement Learning for Multi-Echelon
Inventory Management [1.9161790404101895]
強化学習は、ロボット工学、ゲーム、その他多くの分野において、かなりのブレークスルーをもたらしている。
しかし、複雑な実世界の意思決定問題におけるRLの応用は依然として限られている。
これらの特徴は、ステップアクションの問題を解くために列挙法に依存する既存のRL法において、問題を解くのをかなり難しくする。
本研究では,不確実性分布の適切に選択された離散化が,不確実性からのサンプルがごく少ない場合でも,最適なアクターポリシーに近づきうることを示す。
PARLはベースストックを44.7%、RL法を12.1%上回っている。
論文 参考訳(メタデータ) (2021-12-04T01:40:34Z) - FewNLU: Benchmarking State-of-the-Art Methods for Few-Shot Natural
Language Understanding [89.92513889132825]
本稿では,従来の評価手順を,テスト性能,開発-テスト相関,安定性の3つの重要な側面で改善する評価フレームワークを提案する。
評価フレームワークを実装したツールキットFewNLUと、最先端のメソッドをオープンソースとして公開しています。
論文 参考訳(メタデータ) (2021-09-27T00:57:30Z) - Automatic Resource Allocation in Business Processes: A Systematic Literature Survey [0.0699049312989311]
リソース割り当ては複雑な意思決定の問題であり、プロセスの有効性と効率に大きな影響を与えます。
研究アロケーションを自動で支援するために、幅広いアプローチが開発された。
論文 参考訳(メタデータ) (2021-07-15T11:40:20Z) - Deep Reinforcement Learning for Resource Allocation in Business
Processes [3.0938904602244355]
プロセスに基づく報酬の異なるマルチプロセス環境のモデリングを可能にする新しい表現を提案する。
次に、二重強化学習を使用して、最適なリソース割り当てポリシーを探します。
深層強化学習に基づくリソース割り当ては、一般的な2つのテクニックよりも大幅に優れた結果を得た。
論文 参考訳(メタデータ) (2021-03-29T11:20:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。