Neural Radiance Fields: Past, Present, and Future
- URL: http://arxiv.org/abs/2304.10050v2
- Date: Mon, 15 Jan 2024 00:12:51 GMT
- Title: Neural Radiance Fields: Past, Present, and Future
- Authors: Ansh Mittal
- Abstract summary: An attempt made by Mildenhall et al in their paper about NeRFs led to a boom in Computer Graphics, Robotics, Computer Vision, and the possible scope of High-Resolution Low Storage Augmented Reality and Virtual Reality-based 3D models have gained traction from res with more than 1000 preprints related to NeRFs published.
This survey provides the history of rendering, Implicit Learning, and NeRFs, the progression of research on NeRFs, and the potential applications and implications of NeRFs in today's world.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The various aspects like modeling and interpreting 3D environments and
surroundings have enticed humans to progress their research in 3D Computer
Vision, Computer Graphics, and Machine Learning. An attempt made by Mildenhall
et al in their paper about NeRFs (Neural Radiance Fields) led to a boom in
Computer Graphics, Robotics, Computer Vision, and the possible scope of
High-Resolution Low Storage Augmented Reality and Virtual Reality-based 3D
models have gained traction from res with more than 1000 preprints related to
NeRFs published. This paper serves as a bridge for people starting to study
these fields by building on the basics of Mathematics, Geometry, Computer
Vision, and Computer Graphics to the difficulties encountered in Implicit
Representations at the intersection of all these disciplines. This survey
provides the history of rendering, Implicit Learning, and NeRFs, the
progression of research on NeRFs, and the potential applications and
implications of NeRFs in today's world. In doing so, this survey categorizes
all the NeRF-related research in terms of the datasets used, objective
functions, applications solved, and evaluation criteria for these applications.
Related papers
- NeRF in Robotics: A Survey [95.11502610414803]
The recent emergence of neural implicit representations has introduced radical innovation to computer vision and robotics fields.
NeRF has sparked a trend because of the huge representational advantages, such as simplified mathematical models, compact environment storage, and continuous scene representations.
arXiv Detail & Related papers (2024-05-02T14:38:18Z) - Recent Trends in 3D Reconstruction of General Non-Rigid Scenes [104.07781871008186]
Reconstructing models of the real world, including 3D geometry, appearance, and motion of real scenes, is essential for computer graphics and computer vision.
It enables the synthesizing of photorealistic novel views, useful for the movie industry and AR/VR applications.
This state-of-the-art report (STAR) offers the reader a comprehensive summary of state-of-the-art techniques with monocular and multi-view inputs.
arXiv Detail & Related papers (2024-03-22T09:46:11Z) - 3D Gaussian as a New Era: A Survey [19.47965615118856]
3D Gaussian Splatting (3D-GS) has emerged as a significant advancement in the field of Computer Graphics.
It offers explicit scene representation and novel view synthesis without the reliance on neural networks, such as Neural Radiance Fields (NeRF)
It has found diverse applications in areas such as robotics, urban mapping, autonomous navigation, and virtual reality/augmented reality, just name a few.
arXiv Detail & Related papers (2024-02-11T12:33:08Z) - A Survey on 3D Gaussian Splatting [51.96747208581275]
3D Gaussian splatting (GS) has emerged as a transformative technique in the realm of explicit radiance field and computer graphics.
We provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS.
By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond.
arXiv Detail & Related papers (2024-01-08T13:42:59Z) - State of the Art on Diffusion Models for Visual Computing [191.6168813012954]
This report introduces the basic mathematical concepts of diffusion models, implementation details and design choices of the popular Stable Diffusion model.
We also give a comprehensive overview of the rapidly growing literature on diffusion-based generation and editing.
We discuss available datasets, metrics, open challenges, and social implications.
arXiv Detail & Related papers (2023-10-11T05:32:29Z) - Neural radiance fields in the industrial and robotics domain:
applications, research opportunities and use cases [0.9642500063568189]
neural radiance fields (NeRFs) have emerged as a promising approach for learning 3D scene representations based on provided training 2D images.
We present a series of proof-of-concept experiments that demonstrate the potential of NeRFs in the industrial domain.
arXiv Detail & Related papers (2023-08-14T12:57:12Z) - NeRFs: The Search for the Best 3D Representation [27.339452004523082]
We briefly review the three decades-long quest to find the best 3D representation for view synthesis and related problems.
We then describe new developments in terms of NeRF representations and make some observations and insights regarding the future of 3D representations.
arXiv Detail & Related papers (2023-08-05T00:10:32Z) - BeyondPixels: A Comprehensive Review of the Evolution of Neural Radiance Fields [1.1531932979578041]
NeRF, short for Neural Radiance Fields, is a recent innovation that uses AI algorithms to create 3D objects from 2D images.
This survey reviews recent advances in NeRF and categorizes them according to their architectural designs.
arXiv Detail & Related papers (2023-06-05T16:10:21Z) - NeRF: Neural Radiance Field in 3D Vision, A Comprehensive Review [19.67372661944804]
Neural Radiance Field (NeRF) has recently become a significant development in the field of Computer Vision.
NeRF models have found diverse applications in robotics, urban mapping, autonomous navigation, virtual reality/augmented reality, and more.
arXiv Detail & Related papers (2022-10-01T21:35:11Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
Deep learning has led to a rising demand for neural network architecture engineering.
neural architecture search (NAS) aims at automatically designing neural network architectures in a data-driven manner rather than manually.
NAS has become applicable to a much wider range of problems in computer vision.
arXiv Detail & Related papers (2022-02-15T08:06:50Z) - Neural Fields in Visual Computing and Beyond [54.950885364735804]
Recent advances in machine learning have created increasing interest in solving visual computing problems using coordinate-based neural networks.
neural fields have seen successful application in the synthesis of 3D shapes and image, animation of human bodies, 3D reconstruction, and pose estimation.
This report provides context, mathematical grounding, and an extensive review of literature on neural fields.
arXiv Detail & Related papers (2021-11-22T18:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.