A Survey on 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2401.03890v4
- Date: Mon, 22 Jul 2024 05:13:49 GMT
- Title: A Survey on 3D Gaussian Splatting
- Authors: Guikun Chen, Wenguan Wang,
- Abstract summary: 3D Gaussian splatting (GS) has emerged as a transformative technique in the realm of explicit radiance field and computer graphics.
We provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS.
By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond.
- Score: 51.96747208581275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian splatting (GS) has recently emerged as a transformative technique in the realm of explicit radiance field and computer graphics. This innovative approach, characterized by the utilization of millions of learnable 3D Gaussians, represents a significant departure from mainstream neural radiance field approaches, which predominantly use implicit, coordinate-based models to map spatial coordinates to pixel values. 3D GS, with its explicit scene representation and differentiable rendering algorithm, not only promises real-time rendering capability but also introduces unprecedented levels of editability. This positions 3D GS as a potential game-changer for the next generation of 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research in this domain. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in applicable and explicit radiance field representation.
Related papers
- GSurf: 3D Reconstruction via Signed Distance Fields with Direct Gaussian Supervision [0.0]
Surface reconstruction from multi-view images is a core challenge in 3D vision.
Recent studies have explored signed distance fields (SDF) within Neural Radiance Fields (NeRF) to achieve high-fidelity surface reconstructions.
We introduce GSurf, a novel end-to-end method for learning a signed distance field directly from Gaussian primitives.
GSurf achieves faster training and rendering speeds while delivering 3D reconstruction quality comparable to neural implicit surface methods, such as VolSDF and NeuS.
arXiv Detail & Related papers (2024-11-24T05:55:19Z) - 3D Representation Methods: A Survey [0.0]
3D representation has experienced significant advancements, driven by the increasing demand for high-fidelity 3D models in various applications.
This review examines the development and current state of 3D representation methods, highlighting their research trajectories, innovations, strength and weakness.
arXiv Detail & Related papers (2024-10-09T02:01:05Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting [53.6394928681237]
holistic understanding of urban scenes based on RGB images is a challenging yet important problem.
Our main idea involves the joint optimization of geometry, appearance, semantics, and motion using a combination of static and dynamic 3D Gaussians.
Our approach offers the ability to render new viewpoints in real-time, yielding 2D and 3D semantic information with high accuracy.
arXiv Detail & Related papers (2024-03-19T13:39:05Z) - Recent Advances in 3D Gaussian Splatting [31.3820273122585]
3D Gaussian Splatting has greatly accelerated rendering speed of novel view synthesis.
The explicit representation of 3D Gaussian Splatting facilitates editing tasks like dynamic reconstruction, geometry editing, and physical simulation.
We present a literature review of recent 3D Gaussian Splatting methods, which can be roughly classified into 3D reconstruction, 3D editing, and other downstream applications.
arXiv Detail & Related papers (2024-03-17T07:57:08Z) - 3D Gaussian as a New Era: A Survey [19.47965615118856]
3D Gaussian Splatting (3D-GS) has emerged as a significant advancement in the field of Computer Graphics.
It offers explicit scene representation and novel view synthesis without the reliance on neural networks, such as Neural Radiance Fields (NeRF)
It has found diverse applications in areas such as robotics, urban mapping, autonomous navigation, and virtual reality/augmented reality, just name a few.
arXiv Detail & Related papers (2024-02-11T12:33:08Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS)
We extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions.
The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering.
arXiv Detail & Related papers (2023-11-26T02:35:09Z) - Deep Generative Models on 3D Representations: A Survey [81.73385191402419]
Generative models aim to learn the distribution of observed data by generating new instances.
Recently, researchers started to shift focus from 2D to 3D space.
representing 3D data poses significantly greater challenges.
arXiv Detail & Related papers (2022-10-27T17:59:50Z) - Uncertainty Guided Policy for Active Robotic 3D Reconstruction using
Neural Radiance Fields [82.21033337949757]
This paper introduces a ray-based volumetric uncertainty estimator, which computes the entropy of the weight distribution of the color samples along each ray of the object's implicit neural representation.
We show that it is possible to infer the uncertainty of the underlying 3D geometry given a novel view with the proposed estimator.
We present a next-best-view selection policy guided by the ray-based volumetric uncertainty in neural radiance fields-based representations.
arXiv Detail & Related papers (2022-09-17T21:28:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.