BeyondPixels: A Comprehensive Review of the Evolution of Neural Radiance Fields
- URL: http://arxiv.org/abs/2306.03000v3
- Date: Mon, 18 Mar 2024 18:09:58 GMT
- Title: BeyondPixels: A Comprehensive Review of the Evolution of Neural Radiance Fields
- Authors: AKM Shahariar Azad Rabby, Chengcui Zhang,
- Abstract summary: NeRF, short for Neural Radiance Fields, is a recent innovation that uses AI algorithms to create 3D objects from 2D images.
This survey reviews recent advances in NeRF and categorizes them according to their architectural designs.
- Score: 1.1531932979578041
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural rendering combines ideas from classical computer graphics and machine learning to synthesize images from real-world observations. NeRF, short for Neural Radiance Fields, is a recent innovation that uses AI algorithms to create 3D objects from 2D images. By leveraging an interpolation approach, NeRF can produce new 3D reconstructed views of complicated scenes. Rather than directly restoring the whole 3D scene geometry, NeRF generates a volumetric representation called a ``radiance field,'' which is capable of creating color and density for every point within the relevant 3D space. The broad appeal and notoriety of NeRF make it imperative to examine the existing research on the topic comprehensively. While previous surveys on 3D rendering have primarily focused on traditional computer vision-based or deep learning-based approaches, only a handful of them discuss the potential of NeRF. However, such surveys have predominantly focused on NeRF's early contributions and have not explored its full potential. NeRF is a relatively new technique continuously being investigated for its capabilities and limitations. This survey reviews recent advances in NeRF and categorizes them according to their architectural designs, especially in the field of novel view synthesis.
Related papers
- DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features [65.8738034806085]
DistillNeRF is a self-supervised learning framework for understanding 3D environments in autonomous driving scenes.
Our method is a generalizable feedforward model that predicts a rich neural scene representation from sparse, single-frame multi-view camera inputs.
arXiv Detail & Related papers (2024-06-17T21:15:13Z) - 3D Reconstruction and New View Synthesis of Indoor Environments based on a Dual Neural Radiance Field [17.709306549110153]
We develop a dual neural radiance field (Du-NeRF) to simultaneously achieve high-quality geometry reconstruction and view rendering.
One of the innovative features of Du-NeRF is that it decouples a view-independent component from the density field and uses it as a label to supervise the learning process of the SDF field.
arXiv Detail & Related papers (2024-01-26T09:21:46Z) - Neural Radiance Fields (NeRFs): A Review and Some Recent Developments [0.0]
Neural Radiance Field (NeRF) is a framework that represents a 3D scene in the weights of a fully connected neural network.
NeRFs have become a popular field of research as recent developments have been made that expand the performance and capabilities of the base framework.
arXiv Detail & Related papers (2023-04-30T03:23:58Z) - Clean-NeRF: Reformulating NeRF to account for View-Dependent
Observations [67.54358911994967]
This paper proposes Clean-NeRF for accurate 3D reconstruction and novel view rendering in complex scenes.
Clean-NeRF can be implemented as a plug-in that can immediately benefit existing NeRF-based methods without additional input.
arXiv Detail & Related papers (2023-03-26T12:24:31Z) - NeRFMeshing: Distilling Neural Radiance Fields into
Geometrically-Accurate 3D Meshes [56.31855837632735]
We propose a compact and flexible architecture that enables easy 3D surface reconstruction from any NeRF-driven approach.
Our final 3D mesh is physically accurate and can be rendered in real time on an array of devices.
arXiv Detail & Related papers (2023-03-16T16:06:03Z) - NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from
3D-aware Diffusion [107.67277084886929]
Novel view synthesis from a single image requires inferring occluded regions of objects and scenes whilst simultaneously maintaining semantic and physical consistency with the input.
We propose NerfDiff, which addresses this issue by distilling the knowledge of a 3D-aware conditional diffusion model (CDM) into NeRF through synthesizing and refining a set of virtual views at test time.
We further propose a novel NeRF-guided distillation algorithm that simultaneously generates 3D consistent virtual views from the CDM samples, and finetunes the NeRF based on the improved virtual views.
arXiv Detail & Related papers (2023-02-20T17:12:00Z) - SegNeRF: 3D Part Segmentation with Neural Radiance Fields [63.12841224024818]
SegNeRF is a neural field representation that integrates a semantic field along with the usual radiance field.
SegNeRF is capable of simultaneously predicting geometry, appearance, and semantic information from posed images, even for unseen objects.
SegNeRF is able to generate an explicit 3D model from a single image of an object taken in the wild, with its corresponding part segmentation.
arXiv Detail & Related papers (2022-11-21T07:16:03Z) - NeRF: Neural Radiance Field in 3D Vision, A Comprehensive Review [19.67372661944804]
Neural Radiance Field (NeRF) has recently become a significant development in the field of Computer Vision.
NeRF models have found diverse applications in robotics, urban mapping, autonomous navigation, virtual reality/augmented reality, and more.
arXiv Detail & Related papers (2022-10-01T21:35:11Z) - 3D-aware Image Synthesis via Learning Structural and Textural
Representations [39.681030539374994]
We propose VolumeGAN, for high-fidelity 3D-aware image synthesis, through explicitly learning a structural representation and a textural representation.
Our approach achieves sufficiently higher image quality and better 3D control than the previous methods.
arXiv Detail & Related papers (2021-12-20T18:59:40Z) - BARF: Bundle-Adjusting Neural Radiance Fields [104.97810696435766]
We propose Bundle-Adjusting Neural Radiance Fields (BARF) for training NeRF from imperfect camera poses.
BARF can effectively optimize the neural scene representations and resolve large camera pose misalignment at the same time.
This enables view synthesis and localization of video sequences from unknown camera poses, opening up new avenues for visual localization systems.
arXiv Detail & Related papers (2021-04-13T17:59:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.