論文の概要: Reinforcement Learning for Picking Cluttered General Objects with Dense
Object Descriptors
- arxiv url: http://arxiv.org/abs/2304.10108v1
- Date: Thu, 20 Apr 2023 06:24:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-21 14:20:00.313552
- Title: Reinforcement Learning for Picking Cluttered General Objects with Dense
Object Descriptors
- Title(参考訳): 難易度オブジェクト記述子を用いたクラッタ型汎用オブジェクトの強化学習
- Authors: Hoang-Giang Cao, Weihao Zeng, I-Chen Wu
- Abstract要約: リッチなオブジェクト構造を表現するために,Cluttered Objects Descriptor (COD)を提案する。
我々はCODネットワークと中間出力を使ってピッキングポリシーを訓練する。
我々は、政策を強化学習で訓練し、政策が監督なしで選択を学べるようにした。
- 参考スコア(独自算出の注目度): 4.7246285569677315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Picking cluttered general objects is a challenging task due to the complex
geometries and various stacking configurations. Many prior works utilize pose
estimation for picking, but pose estimation is difficult on cluttered objects.
In this paper, we propose Cluttered Objects Descriptors (CODs), a dense
cluttered objects descriptor that can represent rich object structures, and use
the pre-trained CODs network along with its intermediate outputs to train a
picking policy. Additionally, we train the policy with reinforcement learning,
which enable the policy to learn picking without supervision. We conduct
experiments to demonstrate that our CODs is able to consistently represent seen
and unseen cluttered objects, which allowed for the picking policy to robustly
pick cluttered general objects. The resulting policy can pick 96.69% of unseen
objects in our experimental environment which is twice as cluttered as the
training scenarios.
- Abstract(参考訳): 複雑なジオメトリと様々なスタック構成のため、散らばった一般的なオブジェクトを選択するのは難しい作業です。
多くの先行研究はピッキングにポーズ推定を用いるが、乱雑なオブジェクトではポーズ推定が難しい。
本稿では,リッチオブジェクト構造を表現できる高密度クラッタオブジェクトディスクリプタであるクラッタオブジェクトディスクリプタ(cods)を提案し,その中間出力とともに事前学習されたcodsネットワークを用いてピッキングポリシをトレーニングする。
さらに、我々は強化学習で政策を訓練し、政策が監督なしに選択を学習できるようにする。
実験により,我々のcodは,見抜いたり,見つからなかったりする物体を一貫して表現できることを実証し,選択方針が頑健にクラッタ化された一般物体を選択できることを実証した。
その結果、実験環境では、トレーニングシナリオの2倍も散らばっている、目に見えない対象の96.69%を選択できる。
関連論文リスト
- Seamless Detection: Unifying Salient Object Detection and Camouflaged Object Detection [73.85890512959861]
本稿では,SOD(Salient Object Detection)とCOD(Camouflaged Object Detection)を統合化するためのタスク非依存フレームワークを提案する。
我々は、間隔層と大域的コンテキストを含む単純で効果的なコンテキストデコーダを設計し、67fpsの推論速度を実現する。
公開SODデータセットとCODデータセットの実験は、教師なし設定と教師なし設定の両方において、提案したフレームワークの優位性を実証している。
論文 参考訳(メタデータ) (2024-12-22T03:25:43Z) - Local Occupancy-Enhanced Object Grasping with Multiple Triplanar Projection [24.00828999360765]
本稿では,一般的な物体をロボットでつかむという課題に対処する。
提案したモデルはまず、シーン内で最も可能性の高いいくつかの把握ポイントを提案する。
各グリップポイントの周囲に、モジュールはその近傍にある任意のボクセルが空か、ある物体に占有されているかを推測するように設計されている。
モデルはさらに、局所占有力向上した物体形状情報を利用して、6-DoFグリップポーズを推定する。
論文 参考訳(メタデータ) (2024-07-22T16:22:28Z) - Efficient Representations of Object Geometry for Reinforcement Learning
of Interactive Grasping Policies [29.998917158604694]
本稿では,様々な幾何学的に異なる実世界の物体の対話的把握を学習する強化学習フレームワークを提案する。
学習したインタラクティブなポリシーのビデオはhttps://maltemosbach.org/io/geometry_aware_grasping_policiesで公開されている。
論文 参考訳(メタデータ) (2022-11-20T11:47:33Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
オブジェクトを操作するための訓練エージェントは、多くの課題を提起します。
本研究では,対象物体を探索する環境を探索し,位置が特定されると3次元座標を計算し,対象物が見えない場合でも3次元位置を推定する手法を提案する。
評価の結果,同じ感覚スイートにアクセス可能なモデルに比べて,成功率が3倍に向上したことが示された。
論文 参考訳(メタデータ) (2022-03-15T17:59:01Z) - Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task
Learning [108.08083976908195]
既存の強化学習アルゴリズムで学習したポリシーは、実際は一般化可能であることを示す。
本稿では,100以上の幾何学的に異なる実世界のオブジェクトを,単一のジェネラリストポリシーで手動操作できることを示す。
興味深いことに、オブジェクトポイントクラウド表現によるマルチタスク学習は、より一般化するだけでなく、シングルオブジェクトのスペシャリストポリシーよりも優れています。
論文 参考訳(メタデータ) (2021-11-04T17:59:56Z) - Trajectory-based Reinforcement Learning of Non-prehensile Manipulation
Skills for Semi-Autonomous Teleoperation [18.782289957834475]
本稿では,RGB-Dセンサを用いたピックアップ・アンド・プレイスタスクのための半自律遠隔操作フレームワークを提案する。
トラジェクトリに基づく強化学習を用いて、非包括的操作を学習し、物体を再構成する。
提案手法は,握り時間の観点から手動キーボード制御よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-09-27T14:27:28Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
本研究では,各領域の位置と形状がどの接地トラストオブジェクトとどのように重なり合うかによって,各領域の目的性を純粋に推定する,分類不要なオブジェクトローカライゼーションネットワークを提案する。
この単純な戦略は一般化可能な対象性を学び、クロスカテゴリの一般化に関する既存の提案より優れている。
論文 参考訳(メタデータ) (2021-08-15T14:36:02Z) - Aligning Pretraining for Detection via Object-Level Contrastive Learning [57.845286545603415]
画像レベルのコントラスト表現学習は、伝達学習の汎用モデルとして非常に有効であることが証明されている。
我々は、これは準最適である可能性があり、従って、自己教師付きプレテキストタスクと下流タスクのアライメントを促進する設計原則を提唱する。
Selective Object Contrastive Learning (SoCo) と呼ばれる本手法は,COCO検出における伝達性能の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-04T17:59:52Z) - Supervised Training of Dense Object Nets using Optimal Descriptors for
Industrial Robotic Applications [57.87136703404356]
Florence、Manuelli、TedrakeによるDense Object Nets(DON)は、ロボットコミュニティのための新しいビジュアルオブジェクト表現として高密度オブジェクト記述子を導入した。
本稿では, 物体の3次元モデルを考えると, 記述子空間画像を生成することができ, DON の教師付きトレーニングが可能であることを示す。
産業用物体の6次元グリップ生成のためのトレーニング手法を比較し,新しい教師付きトレーニング手法により,産業関連タスクのピック・アンド・プレイス性能が向上することを示す。
論文 参考訳(メタデータ) (2021-02-16T11:40:12Z) - Occlusion-Aware Search for Object Retrieval in Clutter [4.693170687870612]
乱雑な棚から対象物を回収する操作タスクに対処する。
対象物が隠された場合、ロボットはそれを回収するために溝を探索しなければならない。
クローズドループにおけるオクルージョン認識動作を生成するためのデータ駆動型ハイブリッドプランナを提案する。
論文 参考訳(メタデータ) (2020-11-06T13:15:27Z) - Visuomotor Mechanical Search: Learning to Retrieve Target Objects in
Clutter [43.668395529368354]
本稿では,教師支援による探索,特権情報による批判,中間レベルの表現を組み合わせた新しい深部RL手順を提案する。
我々のアプローチは、ベースラインやアブレーションよりも高速に学習し、より効率的な解の発見に収束する。
論文 参考訳(メタデータ) (2020-08-13T18:23:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。