Phase transition in magic with random quantum circuits
- URL: http://arxiv.org/abs/2304.10481v2
- Date: Thu, 11 Apr 2024 02:22:26 GMT
- Title: Phase transition in magic with random quantum circuits
- Authors: Pradeep Niroula, Christopher David White, Qingfeng Wang, Sonika Johri, Daiwei Zhu, Christopher Monroe, Crystal Noel, Michael J. Gullans,
- Abstract summary: We observe that a random stabilizer code subject to coherent errors exhibits a phase transition in magic.
A better understanding of such rich behavior in the resource theory of magic could shed more light on origins of quantum speedup.
- Score: 1.3551232282678036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Magic is a property of quantum states that enables universal fault-tolerant quantum computing using simple sets of gate operations. Understanding the mechanisms by which magic is created or destroyed is, therefore, a crucial step towards efficient and practical fault-tolerant computation. We observe that a random stabilizer code subject to coherent errors exhibits a phase transition in magic, which we characterize through analytic, numeric and experimental probes. Below a critical error rate, stabilizer syndrome measurements remove the accumulated magic in the circuit, effectively protecting against coherent errors; above the critical error rate syndrome measurements concentrate magic. A better understanding of such rich behavior in the resource theory of magic could shed more light on origins of quantum speedup and pave pathways for more efficient magic state generation.
Related papers
- Experimental Demonstration of Logical Magic State Distillation [62.77974948443222]
We present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer.
Our approach makes use of a dynamically reconfigurable architecture to encode and perform quantum operations on many logical qubits in parallel.
arXiv Detail & Related papers (2024-12-19T18:38:46Z) - Quantum magic dynamics in random circuits [1.9568111750803001]
Magic refers to the degree of "quantumness" in a system that cannot be fully described by stabilizer states and Clifford operations alone.
In quantum computing, stabilizer states and Clifford operations can be efficiently simulated on a classical computer.
arXiv Detail & Related papers (2024-10-28T15:29:21Z) - Magic transition in measurement-only circuits [0.0]
We study magic in a measurement-only quantum circuit with competing types of Clifford and non-Clifford measurements.
We study the magic transition in this circuit in both one- and two-dimensional lattices using large-scale numerical simulations.
arXiv Detail & Related papers (2024-07-22T18:00:07Z) - Magic spreading in random quantum circuits [0.0]
We show how rapidly do generic many-body dynamics generate magic resources under the constraints of locality and unitarity.
We demonstrate that magic resources equilibrate on timescales logarithmic in the system size, akin to anti-concentration and Hilbert space delocalization phenomena.
As random circuits are minimal models for chaotic dynamics, we conjecture that our findings describe the phenomenology of magic resources growth in a broad class of chaotic many-body systems.
arXiv Detail & Related papers (2024-07-04T13:43:46Z) - Dynamical Magic Transitions in Monitored Clifford+T Circuits [0.0]
We study simulability transitions beyond entanglement.
We focus on random monitored Clifford circuits doped by T gates.
We find cases where transitions in magic and entanglement coincide, but also others with a magic and simulability transition in a highly (volume-law) entangled phase.
arXiv Detail & Related papers (2023-11-30T19:00:05Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.