Efficient witnessing and testing of magic in mixed quantum states
- URL: http://arxiv.org/abs/2504.18098v1
- Date: Fri, 25 Apr 2025 05:56:09 GMT
- Title: Efficient witnessing and testing of magic in mixed quantum states
- Authors: Tobias Haug, Poetri Sonya Tarabunga,
- Abstract summary: Nonstabilizerness or magic' is a crucial resource for quantum computers.<n>We provide efficient witnesses of magic based on the stabilizer R'enyi entropy.<n>We experimentally verify the magic of noisy random quantum circuits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonstabilizerness or `magic' is a crucial resource for quantum computers which can be distilled from noisy quantum states. However, determining the magic of mixed quantum has been a notoriously difficult task. Here, we provide efficient witnesses of magic based on the stabilizer R\'enyi entropy which robustly indicate the presence of magic and quantitatively estimate magic monotones. We also design efficient property testing algorithms to reliably distinguish states with high and low magic, assuming the entropy is bounded. We apply our methods to certify the number of noisy T-gates under a wide class of noise models. Additionally, using the IonQ quantum computer, we experimentally verify the magic of noisy random quantum circuits. Surprisingly, we find that magic is highly robust, persisting even under exponentially strong noise. Our witnesses can also be efficiently computed for matrix product states, revealing that subsystems of many-body quantum states can contain extensive magic despite entanglement. Finally, our work also has direct implications for cryptography and pseudomagic: To mimic high magic states with as little magic as possible, one requires an extensive amount of entropy. This implies that entropy is a necessary resource to hide magic from eavesdroppers. Our work uncovers powerful tools to verify and study the complexity of noisy quantum systems.
Related papers
- Experimental Demonstration of Logical Magic State Distillation [62.77974948443222]
We present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer.<n>Our approach makes use of a dynamically reconfigurable architecture to encode and perform quantum operations on many logical qubits in parallel.
arXiv Detail & Related papers (2024-12-19T18:38:46Z) - Noise robustness and threshold of many-body quantum magic [0.5524804393257919]
We investigate how noise affects magic properties in entangled many-body quantum states.
We show that interactions facilitated by high-degree gates are fragile to noise.
We also discuss the qudit case based on the discrete Wigner formalism.
arXiv Detail & Related papers (2024-10-28T17:01:47Z) - Harvesting magic from the vacuum [0.0]
This letter shows that magic can be harvested by a three-level Unruh-DeWitt detector (a qutrit) interacting with a quantum field in an initial vacuum state.
While the idea of extracting resources from Quantum Field Theories (QFT) was born from the harvesting of entanglement, our result extends the protocol to evolve a qutrit from a non-magical state to a magical one.
arXiv Detail & Related papers (2024-09-17T18:02:20Z) - Magic spreading in random quantum circuits [0.0]
We show how rapidly do generic many-body dynamics generate magic resources under the constraints of locality and unitarity.
We demonstrate that magic resources equilibrate on timescales logarithmic in the system size, akin to anti-concentration and Hilbert space delocalization phenomena.
As random circuits are minimal models for chaotic dynamics, we conjecture that our findings describe the phenomenology of magic resources growth in a broad class of chaotic many-body systems.
arXiv Detail & Related papers (2024-07-04T13:43:46Z) - Pseudomagic Quantum States [1.693280275647873]
"Notions of nonstabilizerness" quantify how non-classical quantum states are in a precise sense.
We introduce 'pseudomagic' ensembles of quantum states that, despite low nonstabilizerness, are computationally indistinguishable from those with high nonstabilizerness.
arXiv Detail & Related papers (2023-08-30T18:00:02Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - Phase transition in magic with random quantum circuits [1.3551232282678036]
We observe that a random stabilizer code subject to coherent errors exhibits a phase transition in magic.
A better understanding of such rich behavior in the resource theory of magic could shed more light on origins of quantum speedup.
arXiv Detail & Related papers (2023-04-20T17:29:45Z) - Higher order traps for some strongly degenerate quantum control systems [56.47577824219207]
Quantum control is necessary for a variety of modern quantum technologies as it allows to optimally manipulate quantum systems.
An important problem in quantum control is to establish whether the control objective functional has trapping behaviour or no.
We show that traps of arbitrarily high order exist for controllable quantum systems with special symmetry in the Hamiltonian.
arXiv Detail & Related papers (2023-04-06T20:08:36Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Quantifying Qubit Magic Resource with Gottesman-Kitaev-Preskill Encoding [58.720142291102135]
We define a resource measure for magic, the sought-after property in most fault-tolerant quantum computers.
Our formulation is based on bosonic codes, well-studied tools in continuous-variable quantum computation.
arXiv Detail & Related papers (2021-09-27T12:56:01Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Many-body quantum magic [0.609170287691728]
We show that the maximum magic of an $n$-qubit state is essentially $n$, simultaneously for a range of "good" magic measures.
In the quest for explicit, scalable cases of highly entangled states whose magic can be understood, we connect the magic of hypergraph states with the second-order nonlinearity of their underlying Boolean functions.
We show that $n$-qubit states with nearly $n$ magic, or indeed almost all states, cannot supply nontrivial speedups over classical computers.
arXiv Detail & Related papers (2020-10-26T18:06:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.