Distributed Neural Representation for Reactive in situ Visualization
- URL: http://arxiv.org/abs/2304.10516v2
- Date: Sat, 20 Jul 2024 22:14:42 GMT
- Title: Distributed Neural Representation for Reactive in situ Visualization
- Authors: Qi Wu, Joseph A. Insley, Victor A. Mateevitsi, Silvio Rizzi, Michael E. Papka, Kwan-Liu Ma,
- Abstract summary: Implicit neural representations (INRs) have emerged as a powerful tool for compressing large-scale volume data.
We develop a distributed neural representation and optimize it for in situ visualization.
Our technique eliminates data exchanges between processes, achieving state-of-the-art compression speed, quality and ratios.
- Score: 23.80657290203846
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Implicit neural representations (INRs) have emerged as a powerful tool for compressing large-scale volume data. This opens up new possibilities for in situ visualization. However, the efficient application of INRs to distributed data remains an underexplored area. In this work, we develop a distributed volumetric neural representation and optimize it for in situ visualization. Our technique eliminates data exchanges between processes, achieving state-of-the-art compression speed, quality and ratios. Our technique also enables the implementation of an efficient strategy for caching large-scale simulation data in high temporal frequencies, further facilitating the use of reactive in situ visualization in a wider range of scientific problems. We integrate this system with the Ascent infrastructure and evaluate its performance and usability using real-world simulations.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Event-Stream Super Resolution using Sigma-Delta Neural Network [0.10923877073891444]
Event cameras present unique challenges due to their low resolution and sparse, asynchronous nature of the data they collect.
Current event super-resolution algorithms are not fully optimized for the distinct data structure produced by event cameras.
Research proposes a method that integrates binary spikes with Sigma Delta Neural Networks (SDNNs)
arXiv Detail & Related papers (2024-08-13T15:25:18Z) - Accelerating Convolutional Neural Network Pruning via Spatial Aura
Entropy [0.0]
pruning is a popular technique to reduce the computational complexity and memory footprint of Convolutional Neural Network (CNN) models.
Existing methods for MI computation suffer from high computational cost and sensitivity to noise, leading to suboptimal pruning performance.
We propose a novel method to improve MI computation for CNN pruning, using the spatial aura entropy.
arXiv Detail & Related papers (2023-12-08T09:43:49Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
This paper proposes a Feature-Enhanced Neural Implicit Representation (FFEINR) for super-resolution of flow field data.
It can take full advantage of the implicit neural representation in terms of model structure and sampling resolution.
The training process of FFEINR is facilitated by introducing feature enhancements for the input layer.
arXiv Detail & Related papers (2023-08-24T02:28:18Z) - ARHNet: Adaptive Region Harmonization for Lesion-aware Augmentation to
Improve Segmentation Performance [61.04246102067351]
We propose a foreground harmonization framework (ARHNet) to tackle intensity disparities and make synthetic images look more realistic.
We demonstrate the efficacy of our method in improving the segmentation performance using real and synthetic images.
arXiv Detail & Related papers (2023-07-02T10:39:29Z) - HyperINR: A Fast and Predictive Hypernetwork for Implicit Neural
Representations via Knowledge Distillation [31.44962361819199]
Implicit Neural Representations (INRs) have recently exhibited immense potential in the field of scientific visualization.
In this paper, we introduce HyperINR, a novel hypernetwork architecture capable of directly predicting the weights for a compact INR.
By harnessing an ensemble of multiresolution hash encoding units in unison, the resulting INR attains state-of-the-art inference performance.
arXiv Detail & Related papers (2023-04-09T08:10:10Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
We introduce a modality-agnostic neural compression algorithm based on a functional view of data and parameterised as an Implicit Neural Representation (INR)
Bridging the gap between latent coding and sparsity, we obtain compact latent representations non-linearly mapped to a soft gating mechanism.
After obtaining a dataset of such latent representations, we directly optimise the rate/distortion trade-off in a modality-agnostic space using neural compression.
arXiv Detail & Related papers (2023-01-23T15:22:42Z) - FoVolNet: Fast Volume Rendering using Foveated Deep Neural Networks [33.489890950757975]
FoVolNet is a method to significantly increase the performance of volume data visualization.
We develop a cost-effective foveated rendering pipeline that sparsely samples a volume around a focal point and reconstructs the full-frame using a deep neural network.
arXiv Detail & Related papers (2022-09-20T19:48:56Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.