Learning a quantum computer's capability using convolutional neural
networks
- URL: http://arxiv.org/abs/2304.10650v1
- Date: Thu, 20 Apr 2023 21:25:33 GMT
- Title: Learning a quantum computer's capability using convolutional neural
networks
- Authors: Daniel Hothem, Kevin Young, Tommie Catanach, and Timothy Proctor
- Abstract summary: We investigate using artificial neural networks to learn an approximation to a processor's capability function.
We show that convolutional neural networks can accurately model a processor's capability when that processor experiences gate-dependent, time-dependent, and context-dependent errors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The computational power of contemporary quantum processors is limited by
hardware errors that cause computations to fail. In principle, each quantum
processor's computational capabilities can be described with a capability
function that quantifies how well a processor can run each possible quantum
circuit (i.e., program), as a map from circuits to the processor's success
rates on those circuits. However, capability functions are typically unknown
and challenging to model, as the particular errors afflicting a specific
quantum processor are a priori unknown and difficult to completely
characterize. In this work, we investigate using artificial neural networks to
learn an approximation to a processor's capability function. We explore how to
define the capability function, and we explain how data for training neural
networks can be efficiently obtained for a capability function defined using
process fidelity. We then investigate using convolutional neural networks to
model a quantum computer's capability. Using simulations, we show that
convolutional neural networks can accurately model a processor's capability
when that processor experiences gate-dependent, time-dependent, and
context-dependent stochastic errors. We then discuss some challenges to
creating useful neural network capability models for experimental processors,
such as generalizing beyond training distributions and modelling the effects of
coherent errors. Lastly, we apply our neural networks to model the capabilities
of cloud-access quantum computing systems, obtaining moderate prediction
accuracy (average absolute error around 2-5%).
Related papers
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - What is my quantum computer good for? Quantum capability learning with physics-aware neural networks [0.0]
We present a quantum-physics-aware neural network architecture for learning capability models.
Our architecture combines aspects of graph neural networks with efficient approximations to the physics of errors in quantum programs.
This approach achieves up to $sim50%$ reductions in mean absolute error on both experimental and simulated data.
arXiv Detail & Related papers (2024-06-09T04:11:41Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Supervised learning of random quantum circuits via scalable neural
networks [0.0]
Deep convolutional neural networks (CNNs) are trained to predict single-qubit and two-qubit expectation values.
The CNNs often outperform the quantum devices, depending on the circuit depth, on the network depth, and on the training set size.
arXiv Detail & Related papers (2022-06-21T13:05:52Z) - Quantum neural networks [0.0]
This thesis combines two of the most exciting research areas of the last decades: quantum computing and machine learning.
We introduce dissipative quantum neural networks (DQNNs), which are capable of universal quantum computation and have low memory requirements while training.
arXiv Detail & Related papers (2022-05-17T07:47:00Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - QFCNN: Quantum Fourier Convolutional Neural Network [4.344289435743451]
We propose a new hybrid quantum-classical circuit, namely Quantum Fourier Convolutional Network (QFCN)
Our model achieves exponential speed-up compared with classical CNN theoretically and improves over the existing best result of quantum CNN.
We demonstrate the potential of this architecture by applying it to different deep learning tasks, including traffic prediction and image classification.
arXiv Detail & Related papers (2021-06-19T04:37:39Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - A Tutorial on Quantum Convolutional Neural Networks (QCNN) [11.79760591464748]
Convolutional Neural Network (CNN) is a popular model in computer vision.
CNN is challenging to learn efficiently if the given dimension of data or model becomes too large.
Quantum Convolutional Neural Network (QCNN) provides a new solution to a problem to solve with CNN using a quantum computing environment.
arXiv Detail & Related papers (2020-09-20T12:29:05Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.