Deep reproductive feature generation framework for the diagnosis of
COVID-19 and viral pneumonia using chest X-ray images
- URL: http://arxiv.org/abs/2304.10677v1
- Date: Thu, 20 Apr 2023 23:52:21 GMT
- Title: Deep reproductive feature generation framework for the diagnosis of
COVID-19 and viral pneumonia using chest X-ray images
- Authors: Ceyhun Efe Kayan, Talha Enes Koksal, Arda Sevinc, Abdurrahman Gumus
- Abstract summary: Two-stage feature extraction framework using eight state-of-the-art pre-trained deep Convolutional Neural Networks (CNNs) and an autoencoder is proposed.
X-ray scans are divided into four equally sized sections and analyzed by deep pre-trained CNNs.
Autoencoder with three hidden layers is trained to extract reproductive features from the ouput of CNNs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid and accurate detection of COVID-19 cases is critical for timely
treatment and preventing the spread of the disease. In this study, a two-stage
feature extraction framework using eight state-of-the-art pre-trained deep
Convolutional Neural Networks (CNNs) and an autoencoder is proposed to
determine the health conditions of patients (COVID-19, Normal, Viral Pneumonia)
based on chest X-rays. The X-ray scans are divided into four equally sized
sections and analyzed by deep pre-trained CNNs. Subsequently, an autoencoder
with three hidden layers is trained to extract reproductive features from the
concatenated ouput of CNNs. To evaluate the performance of the proposed
framework, three different classifiers, which are single-layer perceptron
(SLP), multi-layer perceptron (MLP), and support vector machine (SVM) are used.
Furthermore, the deep CNN architectures are used to create benchmark models and
trained on the same dataset for comparision. The proposed framework outperforms
other frameworks wih pre-trained feature extractors in binary classification
and shows competitive results in three-class classification. The proposed
methodology is task-independent and suitable for addressing various problems.
The results show that the discriminative features are a subset of the
reproductive features, suggesting that extracting task-independent features is
superior to the extraction only task-based features. The flexibility and
task-independence of the reproductive features make the conceptive information
approach more favorable. The proposed methodology is novel and shows promising
results for analyzing medical image data.
Related papers
- Reduced Deep Convolutional Activation Features (R-DeCAF) in
Histopathology Images to Improve the Classification Performance for Breast
Cancer Diagnosis [0.0]
Breast cancer is the second most common cancer among women worldwide.
Deep convolutional neural networks (CNNs) are effective solutions.
The features extracted from activation layer of pre-trained CNNs are called deep convolutional activation features (DeCAF)
arXiv Detail & Related papers (2023-01-05T06:53:46Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Uncertainty-driven ensembles of deep architectures for multiclass
classification. Application to COVID-19 diagnosis in chest X-ray images [8.103053617559748]
Recent COVID-19 pandemic has demonstrated the need of developing systems to automatize the diagnosis of pneumonia.
CNNs have proved to be an excellent option for the automatic classification of medical images.
We propose a multi-level ensemble classification system based on a Bayesian Deep Learning approach.
arXiv Detail & Related papers (2020-11-27T14:06:25Z) - BS-Net: learning COVID-19 pneumonia severity on a large Chest X-Ray
dataset [6.5800499500032705]
We design an end-to-end deep learning architecture for predicting, on Chest X-rays images (CXR), a multi-regional score conveying the degree of lung compromise in COVID-19 patients.
We exploit a clinical dataset of almost 5,000 CXR annotated images collected in the same hospital.
Our solution outperforms single human annotators in rating accuracy and consistency.
arXiv Detail & Related papers (2020-06-08T13:55:58Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - A Systematic Search over Deep Convolutional Neural Network Architectures
for Screening Chest Radiographs [4.6411273009803065]
Chest radiographs are used for the screening of pulmonary and cardio-/thoracic conditions.
Recent efforts demonstrate a performance benchmark using an ensemble of deep convolutional neural networks (CNN)
Our systematic search over multiple standard CNN architectures identified single candidate models whose classification performances were found to be at par with ensembles.
arXiv Detail & Related papers (2020-04-24T12:30:40Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-04-23T10:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.