Learn to Cluster Faces with Better Subgraphs
- URL: http://arxiv.org/abs/2304.10831v1
- Date: Fri, 21 Apr 2023 09:18:55 GMT
- Title: Learn to Cluster Faces with Better Subgraphs
- Authors: Yuan Cao, Di Jiang, Guanqun Hou, Fan Deng, Xinjia Chen, Qiang Yang
- Abstract summary: Face clustering can provide pseudo-labels to the massive unlabeled face data.
Existing clustering methods aggregate features within subgraphs based on a uniform threshold or a learned cutoff position.
This work proposed an efficient neighborhood-aware subgraph adjustment method that can significantly reduce the noise.
- Score: 13.511058277653122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face clustering can provide pseudo-labels to the massive unlabeled face data
and improve the performance of different face recognition models. The existing
clustering methods generally aggregate the features within subgraphs that are
often implemented based on a uniform threshold or a learned cutoff position.
This may reduce the recall of subgraphs and hence degrade the clustering
performance. This work proposed an efficient neighborhood-aware subgraph
adjustment method that can significantly reduce the noise and improve the
recall of the subgraphs, and hence can drive the distant nodes to converge
towards the same centers. More specifically, the proposed method consists of
two components, i.e. face embeddings enhancement using the embeddings from
neighbors, and enclosed subgraph construction of node pairs for structural
information extraction. The embeddings are combined to predict the linkage
probabilities for all node pairs to replace the cosine similarities to produce
new subgraphs that can be further used for aggregation of GCNs or other
clustering methods. The proposed method is validated through extensive
experiments against a range of clustering solutions using three benchmark
datasets and numerical results confirm that it outperforms the SOTA solutions
in terms of generalization capability.
Related papers
- Cluster-based Graph Collaborative Filtering [55.929052969825825]
Graph Convolution Networks (GCNs) have succeeded in learning user and item representations for recommendation systems.
Most existing GCN-based methods overlook the multiple interests of users while performing high-order graph convolution.
We propose a novel GCN-based recommendation model, termed Cluster-based Graph Collaborative Filtering (ClusterGCF)
arXiv Detail & Related papers (2024-04-16T07:05:16Z) - Unfolding ADMM for Enhanced Subspace Clustering of Hyperspectral Images [43.152314090830174]
We introduce an innovative clustering architecture for hyperspectral images (HSI) by unfolding an iterative solver based on the Alternating Direction Method of Multipliers (ADMM) for sparse subspace clustering.
Our approach captures well the structural characteristics of HSI data by employing the K nearest neighbors algorithm as part of a structure preservation module.
arXiv Detail & Related papers (2024-04-10T15:51:46Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Progressive Sub-Graph Clustering Algorithm for Semi-Supervised Domain
Adaptation Speaker Verification [17.284276598514502]
We propose a novel progressive subgraph clustering algorithm based on multi-model voting and double-Gaussian based assessment.
To prevent disastrous clustering results, we adopt an iterative approach that progressively increases k and employs a double-Gaussian based assessment algorithm.
arXiv Detail & Related papers (2023-05-22T04:26:18Z) - C3: Cross-instance guided Contrastive Clustering [8.953252452851862]
Clustering is the task of gathering similar data samples into clusters without using any predefined labels.
We propose a novel contrastive clustering method, Cross-instance guided Contrastive Clustering (C3)
Our proposed method can outperform state-of-the-art algorithms on benchmark computer vision datasets.
arXiv Detail & Related papers (2022-11-14T06:28:07Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - A Framework for Joint Unsupervised Learning of Cluster-Aware Embedding
for Heterogeneous Networks [6.900303913555705]
Heterogeneous Information Network (HIN) embedding refers to the low-dimensional projections of the HIN nodes that preserve the HIN structure and semantics.
We propose ours for joint learning of cluster embeddings as well as cluster-aware HIN embedding.
arXiv Detail & Related papers (2021-08-09T11:36:36Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - Improving k-Means Clustering Performance with Disentangled Internal
Representations [0.0]
We propose a simpler approach of optimizing the entanglement of the learned latent code representation of an autoencoder.
Using our proposed approach, the test clustering accuracy was 96.2% on the MNIST dataset, 85.6% on the Fashion-MNIST dataset, and 79.2% on the EMNIST Balanced dataset, outperforming our baseline models.
arXiv Detail & Related papers (2020-06-05T11:32:34Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.